CHEBI:15521 - lauroyl-CoA

Main ChEBI Ontology Automatic Xrefs Reactions Pathways Models
ChEBI Name lauroyl-CoA
ChEBI ID CHEBI:15521
Definition A medium-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of lauric (dodecanoic) acid.
Stars This entity has been manually annotated by the ChEBI Team.
Secondary ChEBI IDs CHEBI:14188, CHEBI:41874, CHEBI:6392, CHEBI:14501, CHEBI:25014
Supplier Information ChemicalBook:CB5165597, eMolecules:481365, ZINC000100009542
Download Molfile XML SDF
more structures >>
Formula C33H58N7O17P3S
Net Charge 0
Average Mass 949.840
Monoisotopic Mass 949.28228
InChI InChI=1S/C33H58N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-24(42)61-17-16-35-23(41)14-15-36-31(45)28(44)33(2,3)19-54-60(51,52)57-59(49,50)53-18-22-27(56-58(46,47)48)26(43)32(55-22)40-21-39-25-29(34)37-20-38-30(25)40/h20-22,26-28,32,43-44H,4-19H2,1-3H3,(H,35,41)(H,36,45)(H,49,50)(H,51,52)(H2,34,37,38)(H2,46,47,48)/t22-,26-,27-,28+,32-/m1/s1
InChIKey YMCXGHLSVALICC-GMHMEAMDSA-N
SMILES CCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N
Metabolite of Species Details
Mus musculus (NCBI:txid10090) Source: BioModels - MODEL1507180067 See: PubMed
Brassica napus (NCBI:txid3708) From MetaboLights See: MetaboLights Study
Escherichia coli (NCBI:txid562) See: PubMed
Roles Classification
Chemical Role(s): acyl donor
Any donor that can transfer acyl groups between molecular entities.
(via acyl-CoA )
Biological Role(s): Escherichia coli metabolite
Any bacterial metabolite produced during a metabolic reaction in Escherichia coli.
mouse metabolite
Any mammalian metabolite produced during a metabolic reaction in a mouse (Mus musculus).
View more via ChEBI Ontology
ChEBI Ontology
Outgoing lauroyl-CoA (CHEBI:15521) has functional parent dodecanoic acid (CHEBI:30805)
lauroyl-CoA (CHEBI:15521) has role Escherichia coli metabolite (CHEBI:76971)
lauroyl-CoA (CHEBI:15521) has role mouse metabolite (CHEBI:75771)
lauroyl-CoA (CHEBI:15521) is a medium-chain fatty acyl-CoA (CHEBI:61907)
lauroyl-CoA (CHEBI:15521) is a saturated fatty acyl-CoA (CHEBI:231546)
lauroyl-CoA (CHEBI:15521) is conjugate acid of lauroyl-CoA(4−) (CHEBI:57375)
Incoming (S)-3-hydroxylauroyl-CoA (CHEBI:27668) has functional parent lauroyl-CoA (CHEBI:15521)
3-oxolauroyl-CoA (CHEBI:27868) has functional parent lauroyl-CoA (CHEBI:15521)
lauroyl-CoA(4−) (CHEBI:57375) is conjugate base of lauroyl-CoA (CHEBI:15521)
IUPAC Name
3'-phosphoadenosine 5'-(3-{(3R)-4-[(3-{[2-(dodecanoylsulfanyl)ethyl]amino}-3-oxopropyl)amino]-3-hydroxy-2,2-dimethyl-4-oxobutyl} dihydrogen diphosphate)
Synonyms Sources
C12:0-CoA ChEBI
coenzyme A, S-dodecanoate ChemIDplus
Dodecanoyl-CoA KEGG COMPOUND
dodecanoyl-coenzyme A ChEBI
Lauroyl coenzyme A KEGG COMPOUND
Lauroyl-CoA KEGG COMPOUND
Lauroyl-coenzyme A ChemIDplus
Manual Xrefs Databases
145018 ChemSpider
C01832 KEGG COMPOUND
c0567 UM-BBD
DB03264 DrugBank
DCC PDBeChem
FDB023198 FooDB
HMDB0003571 HMDB
LMFA07050340 LIPID MAPS
View more database links
Registry Numbers Types Sources
6244-92-4 CAS Registry Number KEGG COMPOUND
6244-92-4 CAS Registry Number ChemIDplus
8033507 Reaxys Registry Number Reaxys
Citations
Yang C, Zhao K, Chen X, Jiang L, Li P, Huang P (2021)
Pellino1 deficiency reprograms cardiomyocytes energy metabolism in lipopolysaccharide-induced myocardial dysfunction.
Amino acids 53, 713-737 [PubMed:33885999]
[show Abstract]
Almeida MGMD, Arêdes DS, Majerowicz D, Færgeman NJ, Knudsen J, Gondim KC (2020)
Expression of acyl-CoA-binding protein 5 from Rhodnius prolixus and its inhibition by RNA interference.
PloS one 15, e0227685 [PubMed:31935250]
[show Abstract]
Wang K, Sybers D, Maklad HR, Lemmens L, Lewyllie C, Zhou X, Schult F, Bräsen C, Siebers B, Valegård K, Lindås AC, Peeters E (2019)
A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius.
Nature communications 10, 1542 [PubMed:30948713]
[show Abstract]
Goblirsch BR, Jensen MR, Mohamed FA, Wackett LP, Wilmot CM (2016)
Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis.
The Journal of biological chemistry 291, 26698-26706 [PubMed:27815501]
[show Abstract]
Fujihashi M, Nakatani T, Hirooka K, Matsuoka H, Fujita Y, Miki K (2014)
Structural characterization of a ligand-bound form of Bacillus subtilis FadR involved in the regulation of fatty acid degradation.
Proteins 82, 1301-1310 [PubMed:24356978]
[show Abstract]
Bond-Watts BB, Weeks AM, Chang MC (2012)
Biochemical and structural characterization of the trans-enoyl-CoA reductase from Treponema denticola.
Biochemistry 51, 6827-6837 [PubMed:22906002]
[show Abstract]
Agari Y, Agari K, Sakamoto K, Kuramitsu S, Shinkai A (2011)
TetR-family transcriptional repressor Thermus thermophilus FadR controls fatty acid degradation.
Microbiology (Reading, England) 157, 1589-1601 [PubMed:21349973]
[show Abstract]
Oba Y, Sato M, Ojika M, Inouye S (2005)
Enzymatic and genetic characterization of firefly luciferase and Drosophila CG6178 as a fatty acyl-CoA synthetase.
Bioscience, biotechnology, and biochemistry 69, 819-828 [PubMed:15849423]
[show Abstract]
Musayev F, Sachdeva S, Scarsdale JN, Reynolds KA, Wright HT (2005)
Crystal structure of a substrate complex of Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III (FabH) with lauroyl-coenzyme A.
Journal of molecular biology 346, 1313-1321 [PubMed:15713483]
[show Abstract]
Badger J, Sauder JM, Adams JM, Antonysamy S, Bain K, Bergseid MG, Buchanan SG, Buchanan MD, Batiyenko Y, Christopher JA, Emtage S, Eroshkina A, Feil I, Furlong EB, Gajiwala KS, Gao X, He D, Hendle J, Huber A, Hoda K, Kearins P, Kissinger C, Laubert B, Lewis HA, Lin J, Loomis K, Lorimer D, Louie G, Maletic M, Marsh CD, Miller I, Molinari J, Muller-Dieckmann HJ, Newman JM, Noland BW, Pagarigan B, Park F, Peat TS, Post KW, Radojicic S, Ramos A, Romero R, Rutter ME, Sanderson WE, Schwinn KD, Tresser J, Winhoven J, Wright TA, Wu L, Xu J, Harris TJ (2005)
Structural analysis of a set of proteins resulting from a bacterial genomics project.
Proteins 60, 787-796 [PubMed:16021622]
[show Abstract]
Nakagawa T, Imanaka T, Morita M, Ishiguro K, Yurimoto H, Yamashita A, Kato N, Sakai Y (2000)
Peroxisomal membrane protein Pmp47 is essential in the metabolism of middle-chain fatty acid in yeast peroxisomes and Is associated with peroxisome proliferation.
The Journal of biological chemistry 275, 3455-3461 [PubMed:10652339]
[show Abstract]
Tamvakopoulos CS, Willi S, Anderson VE, Hale DE (1995)
Long-chain acyl-CoA profiles in cultured fibroblasts from patients with defects in fatty acid oxidation.
Biochemical and molecular medicine 55, 15-21 [PubMed:7551821]
[show Abstract]
Cao YZ, Huang AH (1987)
Acyl coenzyme a preference of diacylglycerol acyltransferase from the maturing seeds of cuphea, maize, rapeseed, and canola.
Plant physiology 84, 762-765 [PubMed:16665518]
[show Abstract]
Poosch MS, Yamazaki RK (1986)
Determination of peroxisomal fatty acyl-CoA oxidase activity using a lauroyl-CoA-based fluorometric assay.
Biochimica et biophysica acta 884, 585-593 [PubMed:3778940]
[show Abstract]
Lazarow PB (1978)
Rat liver peroxisomes catalyze the beta oxidation of fatty acids.
The Journal of biological chemistry 253, 1522-1528 [PubMed:627552]
[show Abstract]
Kienle MG, Cighetti G, Santaniello E, Fiecchi A (1976)
beta-Oxidative cleavage of octanoyl- and dodecanoyl-CoA in rat liver cytoplasm.
Lipids 11, 235-240 [PubMed:1263766]
[show Abstract]
Last Modified
07 June 2024