Skip to main content
Log in

The deterministic identifiability of nonlinear pharmacokinetic models

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

This paper deals with the deterministic identifiability of nonlinear pharmacokinetic models, namely, whether the model parameters can be identified with perfect data. It is shown that the most familiar method for analyzing the deterministic identifiability of linear models, in which the Laplace transform of the observation is examined, does not work for nonlinear models. An alternative method, in which the observation is expanded as a Taylor series about t=0,is described and is illustrated with some examples of nonlinear models familiar in the pharmacokinetics literature, in which an elimination rate is assumed capacity limited, with Michaelis-Menten kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Bellman and K. J. Åström. On structural identifiability.Math. Biosci. 7:329–339 (1970).

    Article  Google Scholar 

  2. K. R. Godfrey, R. P. Jones, and R. F. Brown. Identifiable pharmacokinetic models: The role of extra inputs and measurements.J. Pharmacokin. Biopharm. 8:633–648 (1980).

    Article  CAS  Google Scholar 

  3. K. R. Godfrey.Compartmental Models and Their Application. Academic Press, London and New York, 1983.

    Google Scholar 

  4. M. Kekki, R. J. K. Julkunen, and H. Pohjanpalo. Pharmacokinetics of sulfaethidole in the rat: Nonlinear multicompartment solution.J. Pharmacokin. Biopharm. 10:27–51 (1982).

    Article  CAS  Google Scholar 

  5. M. Gibaldi and D. Perrier.Pharmacokinetics. Marcel Dekker, New York, 1975.

    Google Scholar 

  6. H. Pohjanpalo. System identifiability based on the power series expansion of the solution.Math Biosci. 41:21–33 (1978).

    Article  Google Scholar 

  7. F. Lundquist and H. Wolthers. The kinetics of alcohol elimination in man.Acta Pharmacol. Toxicol. 14:265–289 (1958).

    Article  CAS  Google Scholar 

  8. J. G. Wagner. A modern view of pharmacokinetics.J. Pharmacokin. Biopharm. 1:363–401 (1973).

    Article  CAS  Google Scholar 

  9. J. G. Wagner. Properties of the Michaelis-Menten equation and its integrated form which are useful in pharmacokinetics.J. Pharmacokin. Biopharm. 1:103–121, 337–338 (1973).

    Article  CAS  Google Scholar 

  10. N. Gerber and J. G. Wagner. Explanation of dose dependent decline of diphenylhydantoin plasma levels by fitting to the integrated form of the Michaelis-Menten equation.Res. Commun. Chem. Pathol. Pharmacol. 3:455–466 (1972).

    CAS  PubMed  Google Scholar 

  11. L. K. Garrettson and W. J. Jusko. Diphenylhydantoin elimination kinetics in overdosed children.Clin. Pharmacol Ther. 17:481–491 (1975).

    CAS  PubMed  Google Scholar 

  12. P. K. Wilkinson, A. J. Sedman, E. Sakmar, Y.-J. Lin, and J. G. Wagner. Fasting and non-fasting blood ethanoi concentrations following repeated oral administration of ethanol to one adult male subject.J. Pharmacokin. Biopharm. 5:41–52 (1977).

    Article  CAS  Google Scholar 

  13. Y.- J. Lin, D. J. Weidler, D. C. Garg, and J. G. Wagner. Novel method of estimating volume of distribution of a drug obeying Michaelis-Menten elimination kinetics.J. Pharmacokin. Biopharm. 6:197–207 (1978).

    Article  CAS  Google Scholar 

  14. A. Selen, G. L. Amidon, and P. G. Welling. Pharmacokinetics of probenecid following oral doses to human volunteers.J. Pharm. Sci. 71:1238–1242 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. E. R. Garrett and W. Roth. Nonlinear pharmacokinetics of the new positive inotropic agent sulmazole in the dog.J. Pharm. Sci. 72:105–116 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. A. J. Sedman and J. G. Wagner. Importance of the use of the appropriate pharmacokinetic model to analyse in vivo enzyme constants.J. Pharmacokin. Biopharm. 2:161–173 (1974).

    Article  CAS  Google Scholar 

  17. S. M. Beal. On the solution to the Michaelis-Menten equation.J. Pharmacokin. Biopharm. 10:109–119 (1982).

    Article  CAS  Google Scholar 

  18. H. Pohjanpalo. Identifiability of deterministic differential models in state space: An implementation for a computer. Technical Research Centre of Finland, Espoo, Research Report No. 56, 1982.

  19. A. Holmberg. On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities.Math. Biosci. 62:23–43 (1982).

    Article  Google Scholar 

  20. E. Walter and Y. Lecourtier. Global approaches to identifiability testing for linear and nonlinear state space models. 10th IMACS Congress on System Simulation and Scientific Computation, Montreal, August 1982.

  21. E. Walter.Identifiability of State Space Models. Springer-Verlag, Berlin and New York, 1982.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work described in this paper was supported by Grant GR/B 29238 from the U.K. Science and Engineering Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godfrey, K.R., Fitch, W.R. The deterministic identifiability of nonlinear pharmacokinetic models. Journal of Pharmacokinetics and Biopharmaceutics 12, 177–191 (1984). https://doi.org/10.1007/BF01059277

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059277

Key words

Navigation