Skip to main content

Advertisement

Log in

Application of Clinical Trial Simulation to Compare Proof-of-Concept Study Designs for Drugs with a Slow Onset of Effect; An Example in Alzheimer's Disease

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Objective

Clinical trial simulation (CTS) was used to select a robust design to test the hypothesis that a new treatment was effective for Alzheimer's disease (AD). Typically, a parallel group, placebo controlled, 12-week trial in 200–400 AD patients would be used to establish drug effect relative to placebo (i.e., Ho: Drug Effect = 0). We evaluated if a crossover design would allow smaller and shorter duration trials.

Materials and Methods

A family of plausible drug and disease models describing the time course of the AD assessment scale (ADAS-Cog) was developed based on Phase I data and literature reports of other treatments for AD. The models included pharmacokinetic, pharmacodynamic, disease progression, and placebo components. Eight alternative trial designs were explored via simulation. One hundred replicates of each combination of drug and disease model and trial design were simulated. A ‘positive trial’ reflecting drug activity was declared considering both a dose trend test (p < 0.05) and pair-wise comparisons to placebo (p < 0.025).

Results

A 4 × 4 Latin Square design was predicted to have at least 80% power to detect activity across a range of drug and disease models. The trial design was subsequently implemented and the trial was completed. Based on the results of the actual trial, a conclusive decision about further development was taken. The crossover design provided enhanced power over a parallel group design due to the lower residual variability.

Conclusion

CTS aided the decision to use a more efficient proof of concept trial design, leading to savings of up to US$4M in direct costs and a firm decision 8–12 months earlier than a 12-week parallel group trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. P. L. Bonate. Clinical trial simulation in drug development. Pharm. Res. 17:3252–3256 (2000).

    Article  Google Scholar 

  2. N. H. G. Holford, H. C. Kimko, J. P. R. Monteleone, and C. C. Peck. Simulation of clinical trials. Ann. Rev. Pharmacol. Toxicol. 40:209–234 (2000).

    Article  CAS  Google Scholar 

  3. M. E. Putt and B. Ravina. Randomized, placebo controlled, parallel group versus crossover study designs for the study of dementia in Parkinson's disease. Control. Clin. Trials 23:111–126 (2002).

    Article  PubMed  Google Scholar 

  4. G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, E. M. Stadlam et al., Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force of Alzheimer's disease. Neurology 34:939–944 (1984).

    PubMed  CAS  Google Scholar 

  5. A. I. Levey. Muscarinic acetylcholine receptor expression in memory circuits: implication for treatment of Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 93:13541–13546 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. M. R. Emmerling, R. D. Schwarz, K. Spiegel, and M. J. Callahan. New perspectives on developing muscarinic agoists for Alzheimer's disease. Alzheimers Dis. 2:187–194 (1997).

    Google Scholar 

  7. D. J. Selkoe. Alzheimer's disease: a central role for amyloid. J. Neuropathol. Exp. Neurol. 43:438–447 (1994).

    Article  Google Scholar 

  8. R. G. M. Morris. Development of a water maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11:47–60 (1984).

    Article  PubMed  CAS  Google Scholar 

  9. T. T. Soncrant, K. C. Raffaele, S. Asthana, A. Berardi, P. P. Morris, and J. V. Haxby. Memory improvement without toxicity during chronic low dose intravenous arecoline in Alzheimer's disease. Psychopharmacology 112:421–427 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. N. Qizibash, A. Whitehead, J. Higgans, G. Wilcock, L. Schneider, and M. Farlow. Cholinesterase inhibition for Alzheimer disease. a meta-analysis of the tacrine trials. JAMA 280:1777–1782 (1998).

    Article  Google Scholar 

  11. A. Whitehead, C. Perdomo, R. D. Pratt, J. Birks, G. K. Wilcock, and J. G. Evans. Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer's disease: a meta-analysis of individual patient data from randomized controlled trials. Int. J. Geriatr. Psychiatry 19:624–633 (2004).

    Article  PubMed  Google Scholar 

  12. N. Trinh, J. Hoblyn, S. Mohanty, and K. Yaffe. Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease. A meta-analysis. JAMA 289:210–216 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. W. G. Rosen, R. C. Mohs, and K. Davis. A new rating scale for Alzheimer's disease. Am. J. Psychiatry 141:1356–64 (1984).

    PubMed  CAS  Google Scholar 

  14. N. H. G Holford and K. E. Peace. Results and validation of a population pharmacodynamic model for cognitive effects in Alzheimers patients treated with tacrine. Proc. Natl. Acad. Sci. 89:11471–11475 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. A. Burns, M. Rossor, J. Hecker, S. Gauthier, H. Petit, H. J. Moller, S. L. Rogers, L. T. Freidhoff. and the International Donepezil Study Group. The effects of Donepezil in Alzheimer's disease—results from a multinational trial. Dement. Geriatr. Cogn. Disord. 10:237–244 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. N. H. G. Holford and K. E. Peace. Methodologic aspects of a population pharmacodynamic model for cognitive effects in Alzheimers patients treated with tacrine. Proc. Natl. Acad. Sci. 89:11466–11470 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. P. L. Chan and N. H. G. Holford. Drug treatment effects on disease progress. Ann. Rev. Pharmacol. Toxicol. 41:625–659 (2001).

    Article  CAS  Google Scholar 

  18. N. H. G. Holford and L. B. Sheiner. Understanding the dose–effect relationship: clinical application of pharmacokinetic and pharmacodynamic models. Clin. Pharmacokinet. 6:429–453 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. L. S. Beal and L. B. Sheiner. NONMEM Users Guides, part I–VIII. University of California, San Francisco, 1996.

    Google Scholar 

  20. M. O. Karlsson and L. B. Sheiner. The importance of modeling inter-occasion variability in population pharmacokinetic analyses. J. Pharmacokinet. Biopharm. 21:735–750 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. B. Jones and M. G. Kenward. Design and Analysis of Cross-Over Trials. Chapman & Hall, London, 1994.

    Google Scholar 

  22. Pharsight Trial Simulator Version 2.1. 2000. Pharsight Corporation Mountain View California, USA.

  23. H. Feldman, B. Van Baelen, S. M Kavanagh, and E. L. Koen. Torfs, MSc§ Cognition, function, and caregiving time patterns in patients with mild-to-moderate Alzheimer disease—a 12–month analysis. Alzheimer Dis. Assoc. Disord. 19:29–36 (2005).

    Article  PubMed  Google Scholar 

  24. R. G. Stern, R. C. Mohs, and M. Davidson. A longitudinal study of Alzheimer's disease: measurement, rate, and predictors of cognitive deterioration. Am. J. Psychiatry 151:390–396 (1994).

    PubMed  CAS  Google Scholar 

  25. P. S. Aisen, K. L Davis, J. D. Berg, K. Schafer, K Campbell, R. G. Thomas, M. F. Weiner, M. R. Farlow, M. Sano, M. Grundman, and L. J. Thal. A randomized controlled trial of prednisone in Alzheimer's disease. Alzheimer's disease cooperative study. Neurology 54:588–593 (2000).

    PubMed  CAS  Google Scholar 

  26. P. S. Aisen, K. A. Schafer, M. Grundman, E. Pfeiffer, M. Sano, K. L. Davis, M. R. Farlow, S. Jin, R. G. Thomas, and L. J. Thal. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289:2819–2826 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. S. A. Reines, G. A. Block, J. C. Morris, G. Liu, M. L. Nessly, C. R. Lines, B. A. Norman, and C. C. Baranak. Rofecoxib: no effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study. Neurology 62:66–71 (2004).

    PubMed  CAS  Google Scholar 

  28. M. Sano, C. Ernesto, R. G. Thomas, M. R. Klauber, K. Schafer, M. Grundman, P. Woodbury, J. Growdon, C. W. Cotman, E. Pfeiffer, L. S. Schneider, and L. J. Thal. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's disease cooperative study. N. Engl. J. Med. 336:1216–1222 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. L. J. Thal, M. Calvani, A. Amato, and A. Carta. A 1-year controlled trial of acetyl-l-carnitine in early-onset AD. Neurology 55:805–810 (2000).

    PubMed  CAS  Google Scholar 

  30. A. E. Veroff, N. C. Bodick, W. W. Offen, J. J. Sramek, and N. R. Cutler. Efficacy of xanomeline in Alzheimer's disease: cognitive improvement measured using the computerized neuropsychological test battery (CNTB). Alzheimer Dis. Assoc. Disord. 12:304–312 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. US Department of Health and Human Services, Food and Drug Administration. Challenge and opportunity on the critical path to new medical products (2004). http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html.

  32. P. J. Whithouse, R. Arizaga, H. Brodaty, and S.Gauthier. Placebo in clinical trials in Alzheimer disease: an international discussion. Alzheimer Dis. Assoc. Disord. 13:121–123 (1999).

    Article  Google Scholar 

  33. D. Knopman, J. Kahn, and S. Miles. Clinical research designs for emerging treatments for Alzheimer disease. Moving beyond placebo controlled trials. Arch. Neurol. 55:1425–1429 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. L. B. Sheiner. Learning versus confirming in clinical drug development. Clin. Pharmacol. Ther. 6:275–291 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lockwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockwood, P., Ewy, W., Hermann, D. et al. Application of Clinical Trial Simulation to Compare Proof-of-Concept Study Designs for Drugs with a Slow Onset of Effect; An Example in Alzheimer's Disease. Pharm Res 23, 2050–2059 (2006). https://doi.org/10.1007/s11095-006-9048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9048-8

Key words

Navigation