Skip to main content
Log in

Construction and Validation of a Genome-Scale Metabolic Network of Thermotoga sp. Strain RQ7

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Thermotoga are anaerobic hyperthermophiles that have a deep lineage to the last universal ancestor and produce biological hydrogen gas accompanying cell growth. In recent years, systems-level approaches have been used to elucidate their metabolic capacities, by integrating mathematical modeling and experimental results. To assist biochemical engineering studies of T. sp. strain RQ7, this work aims at building a metabolic model of the bacterium that quantitatively simulates its metabolism at the genome scale. The constructed model, RQ7_iJG408, consists of 408 genes, 692 reactions, and 538 metabolites. Constraint-based flux balance analyses were used to simulate cell growth in both the complex and defined media. Quantitative comparison of the predicted and measured growth rates resulted in good agreements. This model serves as a foundation for an integrated biochemical description of T. sp. strain RQ7. It is a useful tool in designing growth media, identifying metabolic engineering strategies, and exploiting the physiological potentials of this biotechnologically significant organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATPM:

ATP maintenance

BOF:

Biomass objective function

COBRA:

Constraint-based reconstruction and analysis

GEM:

Genome-scale metabolic model

GPR:

Gene-protein association

LPS:

Lipopolysaccharides

SBML:

Systems Biology Markup Language

RQ7:

Thermotoga sp. strain RQ7

References

  1. Maru, B. T., Bielen, A., Kengen, S., Constantí, M., & Medina, F. (2012). Biohydrogen production from glycerol using Thermotoga spp. Energy Procedia, 29, 300–307.

    Article  CAS  Google Scholar 

  2. Schröder, C., Selig, M., & Schönheit, P. (1994). Glucose fermentation to acetate, CO 2 and H 2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Archives of Microbiology, 161, 460–470.

    Google Scholar 

  3. Huber, R., Langworthy, T. A., König, H., Thomm, M., Woese, C. R., Sleytr, U. B., et al. (1986). Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Archives of Microbiology, 144(4), 324–333. https://doi.org/10.1007/BF00409880.

    Article  CAS  Google Scholar 

  4. Yu, X., & Drapcho, C. M. (2011). Hydrogen production by the hyperthermophilic bacterium Thermotoga neapolitana using agricultural-based carbon and nitrogen sources. Biological Engineering Transactions, 4, 101–112. https://doi.org/10.13031/2013.38506.

    Article  CAS  Google Scholar 

  5. Rodionov, D. A., Rodionova, I. A., Li, X., Ravcheev, D. A., Tarasova, Y., Portnoy, V. A., et al. (2013). Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima. Frontiers in Microbiology, 4, 244.

    Article  Google Scholar 

  6. Han, D., Norris, S. M., & Xu, Z. (2012). Construction and transformation of a Thermotoga-E. coli shuttle vector. BMC Biotechnology, 12, 2.

    Article  CAS  Google Scholar 

  7. Han, D., & Xu, Z. (2017). Development of a pyrE-based selective system for Thermotoga sp. strain RQ7. Extremophiles, 21, 297–306. https://doi.org/10.1007/s00792-016-0902-2.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, H., Han, D., & Xu, Z. (2015). Expression of heterologous cellulases in Thermotoga sp. strain RQ2. BioMed Research International, 2015, 304523. https://doi.org/10.1155/2015/304523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. White, D., Singh, R., Rudrappa, D., Mateo, J., Kramer, L., Freese, L., & Blum, P. (2017). Contribution of pentose catabolism to molecular hydrogen formation by targeted disruption of arabinose isomerase (araA) in the hyperthermophilic bacterium Thermotoga maritima. Applied and Environmental Microbiology, 83(4), e02631–e02616. https://doi.org/10.1128/AEM.02631-16.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Singh, R., White, D., & Blum, P. (2017). Identification of the ATPase subunit of the primary maltose transporter in the hyperthermophilic anaerobe Thermotoga maritima. Applied and Environmental Microbiology, 83, e00930–e00917. Print 2017 Sep 15. https://doi.org/10.1128/AEM.00930-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schellenberger, J., Que, R., Fleming, R. M., Thiele, I., Orth, J. D., Feist, A. M., et al. (2011). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nature Protocols, 6, 1290.

    Article  CAS  Google Scholar 

  12. Oliveira, A. P., Nielsen, J., & Förster, J. (2005). Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiology, 5(1), 39.

    Article  Google Scholar 

  13. Chavali, A. K., Whittemore, J. D., Eddy, J. A., Williams, K. T., & Papin, J. A. (2008). Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Molecular Systems Biology, 4(1), 177.

    Article  Google Scholar 

  14. Baart, G. J., Zomer, B., de Haan, A., van der Pol, L. A., Beuvery, E. C., Tramper, J., et al. (2007). Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes. Genome Biology, 8, R136.

    Article  Google Scholar 

  15. Park, J. H., Lee, K. H., Kim, T. Y., & Lee, S. Y. (2007). Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proceedings of the National Academy of Sciences, 104(19), 7797–7802.

    Article  CAS  Google Scholar 

  16. Zhang, Y., Thiele, I., Weekes, D., Li, Z., Jaroszewski, L., Ginalski, K., Deacon, A. M., Wooley, J., Lesley, S. A., Wilson, I. A., Palsson, B., Osterman, A., & Godzik, A. (2009). Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science., 325(5947), 1544–1549.

    Article  CAS  Google Scholar 

  17. Nogales, J., Gudmundsson, S., & Thiele, I. (2012). An in silico re-design of the metabolism in Thermotoga maritima for increased biohydrogen production. International Journal of Hydrogen Energy, 37(17), 12205–12218.

    Article  CAS  Google Scholar 

  18. Latif, H., Sahin, M., Tarasova, J., Tarasova, Y., Portnoy, V. A., Nogales, J., & Zengler, K. (2015). Adaptive evolution of Thermotoga maritima reveals plasticity of the ABC transporter network. Appl.Environ.Microbiol., 81(16), 5477–5485.

    Article  CAS  Google Scholar 

  19. Lerman, J. A., Hyduke, D. R., Latif, H., Portnoy, V. A., Lewis, N. E., Orth, J. D., Schrimpe-Rutledge, A. C., Smith, R. D., Adkins, J. N., Zengler, K., & Palsson, B. O. (2012). In silico method for modelling metabolism and gene product expression at genome scale. Nature Communications, 3(1), 929.

    Article  Google Scholar 

  20. Brunk, E., Mih, N., Monk, J., Zhang, Z., O’Brien, E. J., Bliven, S. E., Chen, K., Chang, R. L., Bourne, P. E., & Palsson, B. O. (2016). Systems biology of the structural proteome. BMC Systems Biology, 10(1), 26.

    Article  Google Scholar 

  21. King, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., et al. (2015). BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Research, 44, D515–D522.

    Article  Google Scholar 

  22. Swithers, K. S., DiPippo, J. L., Bruce, D. C., Detter, C., Tapia, R., Han, S., et al. (2011). Genome sequence of Thermotoga sp. strain RQ2, a hyperthermophilic bacterium isolated from a geothermally heated region of the seafloor near Ribeira Quente, the Azores. Journal of Bacteriology, 193, 5869–5870. https://doi.org/10.1128/JB.05923-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han, D., Xu, H., Puranik, R., & Xu, Z. (2014). Natural transformation of Thermotoga sp. strain RQ7. BMC Biotechnology, 14(1), 39. https://doi.org/10.1186/1472-6750-14-39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Ooteghem, S. A., Jones, A., van der Lelie, D., Dong, B., & Mahajan, D. (2004). H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnology Letters, 26(15), 1223–1232. https://doi.org/10.1023/B:BILE.0000036602.75427.88.

    Article  PubMed  Google Scholar 

  25. Thiele, I., & Palsson, B. Ø. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols, 5(1), 93–121.

    Article  CAS  Google Scholar 

  26. Chan, S. H., Cai, J., Wang, L., Simons-Senftle, M. N., & Maranas, C. D. (2017). Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models. Bioinformatics., 33(22), 3603–3609.

    Article  CAS  Google Scholar 

  27. Neidhardt, F. C., Ingraham, J. L., & Schaechter, M. (1990). Physiology of the bacterial cell: a molecular approach. Sunderland: Sinauer Associates.

    Google Scholar 

  28. De Rosa, M., Gambacorta, A., Huber, R., Lanzotti, V., Nicolaus, B., Stetter, K. O., et al. (1988). A new 15,16-dimethyl-30-glyceryloxytriacontanoic acid from lipids of Thermotoga maritima. Journal of the Chemical Society, Chemical Communications, 19, 1300–1301. Royal Society of Chemistry (RSC). https://doi.org/10.1039/c39880001300.

  29. Sutcliffe, I. C. (2010). A phylum level perspective on bacterial cell envelope architecture. Trends in Microbiology, 18(10), 464–470.

    Article  CAS  Google Scholar 

  30. Bos, M. P., Tefsen, B., Geurtsen, J., & Tommassen, J. (2004). Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proceedings of the National Academy of Sciences of the United States of America, 101(25), 9417–9422. https://doi.org/10.1073/pnas.0402340101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ebrahim, A., Lerman, J. A., Palsson, B. O., & Hyduke, D. R. (2013). COBRApy: constraints-based reconstruction and analysis for python. BMC Systems Biology, 7(1), 74.

    Article  Google Scholar 

  32. Xu, Z., Puranik, R., Hu, J., Xu, H., & Han, D. (2017). Complete genome sequence of Thermotoga sp. strain RQ7. Standards in Genomic Sciences, 12(1), 62. https://doi.org/10.1186/s40793-017-0271-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research, 44(14), 6614–6624. https://doi.org/10.1093/nar/gkw569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rinker, K. D., & Kelly, R. M. (2000). Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnology and Bioengineering, 69(5), 537–547. https://doi.org/10.1002/1097-0290(20000905)69:53.0.CO;2-7.

    Article  CAS  PubMed  Google Scholar 

  35. Lieven, C., Beber, M. E., Olivier, B. G., Bergmann, F. T., Ataman, M., Babaei, P., Bartell, J. A., Blank, L. M., Chauhan, S., Correia, K., Diener, C., Dräger, A., Ebert, B. E., Edirisinghe, J. N., Faria, J. P., Feist, A. M., Fengos, G., Fleming, R. M. T., García-Jiménez, B., Hatzimanikatis, V., van Helvoirt, W., Henry, C. S., Hermjakob, H., Herrgård, M. J., Kaafarani, A., Kim, H. U., King, Z., Klamt, S., Klipp, E., Koehorst, J. J., König, M., Lakshmanan, M., Lee, D. Y., Lee, S. Y., Lee, S., Lewis, N. E., Liu, F., Ma, H., Machado, D., Mahadevan, R., Maia, P., Mardinoglu, A., Medlock, G. L., Monk, J. M., Nielsen, J., Nielsen, L. K., Nogales, J., Nookaew, I., Palsson, B. O., Papin, J. A., Patil, K. R., Poolman, M., Price, N. D., Resendis-Antonio, O., Richelle, A., Rocha, I., Sánchez, B. J., Schaap, P. J., Malik Sheriff, R. S., Shoaie, S., Sonnenschein, N., Teusink, B., Vilaça, P., Vik, J. O., Wodke, J. A. H., Xavier, J. C., Yuan, Q., Zakhartsev, M., & Zhang, C. (2020). MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 38(3), 272–276. https://doi.org/10.1038/s41587-020-0446-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., & Palsson, B. O. (2015). Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Computational Biology, 11(8), e1004321.

    Article  Google Scholar 

  37. Hosoya, R., Hamana, K., Niitsu, M., & Itoh, T. (2004). Polyamine analysis for chemotaxonomy of thermophilic eubacteria: polyamine distribution profiles within the orders Aquificales, Thermotogales, Thermodesulfobacteriales, Thermales, Thermoanaerobacteriales, Clostridiales and Bacillales. The Journal of General and Applied Microbiology, 50, 271–287. https://doi.org/10.2323/jgam.50.271.

    Article  CAS  PubMed  Google Scholar 

  38. Manca, M. C., Nicolaus, B., Lanzotti, V., Trincone, A., Gambacorta, A., Peter-Katalinic, J., Egge, H., Huber, R., & Stetter, K. O. (1992). Glycolipids from Thermotoga maritima, a hyperthermophilic microorganism belonging to Bacteria domain. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism., 1124(3), 249–252. https://doi.org/10.1016/0005-2760(92)90136-J.

    Article  CAS  Google Scholar 

  39. Carballeira, N. M., Reyes, M., Sostre, A., Huang, H., Verhagen, M. F., & Adams, M. W. (1997). Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima. Journal of Bacteriology, 179(8), 2766–2768. https://doi.org/10.1128/jb.179.8.2766-2768.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Damsté, J., Sinninghe, S., Rijpstra, W. I., Hopmans, E. C., Schouten, S., Balk, M., & Stams, A. J. M. (2007). Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Archives of Microbiology, 188, 629–641. https://doi.org/10.1007/s00203-007-0284-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vendeville, A., Larivière, D., & Fourmentin, E. (2011). An inventory of the bacterial macromolecular components and their spatial organization. FEMS Microbiology Reviews, 35(2), 395–414.

    Article  CAS  Google Scholar 

  42. Ban, N., Beckmann, R., Cate, J. H., Dinman, J. D., Dragon, F., Ellis, S. R., et al. (2014). A new system for naming ribosomal proteins. Current Opinion in Structural Biology, 24, 165–169. https://doi.org/10.1016/j.sbi.2014.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rosenbusch, J. P. (1974). Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. The Journal of Biological Chemistry, 249(24), 8019–8029.

    Article  CAS  Google Scholar 

  44. Palanivelu, P.. Multi-Subunit, R. N. A. (2018). Polymerases of bacteria: an insight into their active sites and catalytic mechanism. Indian Journal of Science and Technology, 11.

  45. Koslover, D. J., Callaghan, A. J., Marcaida, M. J., Garman, E. F., Martick, M., Scott, W. G., & Luisi, B. F. (2008). The crystal structure of the Escherichia coli RNase E apoprotein and a mechanism for RNA degradation. Structure., 16(8), 1238–1244.

    Article  CAS  Google Scholar 

  46. Engel, A. M., Cejka, Z., Lupas, A., Lottspeich, F., & Baumeister, W. (1992). Isolation and cloning of Omp alpha, a coiled-coil protein spanning the periplasmic space of the ancestral eubacterium Thermotoga maritima. The EMBO Journal., 11(12), 4369–4378. https://doi.org/10.1002/j.1460-2075.1992.tb05537.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Engel, A. M., Brunen, M., & Baumeister, W. (1993). The functional properties of Ompβ, the regularly arrayed porin of the hyperthermophilic bacterium Thermotoga maritima. FEMS Microbiology Letters, 109(2-3), 231–236. https://doi.org/10.1111/j.1574-6968.1993.tb06173.x.

    Article  CAS  Google Scholar 

  48. Palanivelu P (2018). Multi-Subunit RNA Polymerases of Bacteria: An Insight into their Active Sites and Catalytic Mechanism. Indian Journal of Science and Technology, 11(39):1–37. https://doi.org/10.17485/ijst/2018/v11i39/131802.

  49. Lolkema, J. S., Chaban, Y., & Boekema, E. J. (2003). Subunit composition, structure, and distribution of bacterial V-type ATPases. Journal of Bioenergetics and Biomembranes, 35, 323–335. https://doi.org/10.1023/a:1025776831494.

    Article  CAS  PubMed  Google Scholar 

  50. Deckers-Hebestreit, G., & Altendorf, K. (1996). The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annual Review of Microbiology, 50, 791–824. https://doi.org/10.1146/annurev.micro.50.1.791.

    Article  CAS  PubMed  Google Scholar 

  51. Cramer, J. D., & Jarrett, J. T. (2018). Purification, characterization, and biochemical assays of biotin synthase from Escherichia coli. Methods in Enzymology, 606, 363–388.

    Article  CAS  Google Scholar 

  52. Kim, T. H., Sebastian, S., Pinkham, J. T., Ross, R. A., Blalock, L. T., & Kasper, D. L. (2010). Characterization of the O-antigen polymerase (Wzy) of Francisella tularensis. The Journal of Biological Chemistry, 285, 27839–27849. https://doi.org/10.1074/jbc.M110.143859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. RUTTER, W. J. (1964). Evolution of aldolase. Federation Proceedings, 23, 1248–1257.

    CAS  PubMed  Google Scholar 

  54. Lee, N. R., Lakshmanan, M., Aggarwal, S., Song, J. W., Karimi, I. A., Lee, D. Y., et al. (2014). Genome-scale metabolic network reconstruction and in silico flux analysis of the thermophilic bacterium Thermus thermophilus HB27. Microbial Cell Factories, 13, 61. https://doi.org/10.1186/1475-2859-13-61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oshima, T., & Imahori, K. (1974). Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. International Journal of Systematic and Evolutionary Microbiology, 24(1), 102–112. https://doi.org/10.1099/00207713-24-1-102.

    Article  CAS  Google Scholar 

  56. Leone, S., Molinaro, A., Lindner, B., Romano, I., Nicolaus, B., Parrilli, M., Lanzetta, R., & Holst, O. (2006). The structures of glycolipids isolated from the highly thermophilic bacterium Thermus thermophilus Samu-SA1. Glycobiology., 16(8), 766–775. https://doi.org/10.1093/glycob/cwj120.

    Article  CAS  PubMed  Google Scholar 

  57. Manasi, Mohapatra, S., Rajesh, N., & Rajesh, V. (2017). Impact of heavy metal lead stress on polyamine levels in Halomonas BVR 1 isolated from an industry effluent. Scientific Reports, 7, 13447. https://doi.org/10.1038/s41598-017-13893-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rangan, P., Subramani, R., Kumar, R., Singh, A. K., & Singh, R. (2014). Recent advances in polyamine metabolism and abiotic stress tolerance. BioMed Research International, 2014, 239621–239629. https://doi.org/10.1155/2014/239621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Michael, A. J. (2018). Polyamine function in archaea and bacteria. The Journal of Biological Chemistry., 293(48), 18693–18701. https://doi.org/10.1074/jbc.tm118.005670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chhabra, S. R., Shockley, K. R., Conners, S. B., Scott, K. L., Wolfinger, R. D., & Kelly, R. M. (2003). Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. The Journal of Biological Chemistry, 278, 7540–7552. https://doi.org/10.1074/jbc.M211748200.

    Article  CAS  PubMed  Google Scholar 

  61. Lee, D. W., Jang, H. J., Choe, E. A., Kim, B. C., Lee, S. J., Kim, S. B., et al. (2004). Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima. Applied and Environmental Microbiology, 70, 1397–1404. https://doi.org/10.1128/aem.70.3.1397-1404.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jannasch, H. W., Huber, R., Belkin, S., & Stetter, K. O. (1988). Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Archives of Microbiology, 150(1), 103–104. https://doi.org/10.1007/BF00409725.

    Article  Google Scholar 

  63. Uchino, Y., & Ken-Ichiro, S. (2011). A simple preparation of liquid media for the cultivation of strict anaerobes. Journal of Petroleum & Environmental Biotechnology, S3, 001.

    Google Scholar 

  64. Raven, N. D. H., & Sharp, R. J. (1997). Development of defined and minimal media for the growth of the hyperthermophilic archaeon Pyrococcus furiosus Vc1. FEMS Microbiology Letters, 146(1), 135–141. https://doi.org/10.1111/j.1574-6968.1997.tb10183.x.

    Article  CAS  Google Scholar 

  65. Apine, O. A., & Jadhav, J. P. (2011). Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. Journal of Applied Microbiology, 110(5), 1235–1244.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZX conceived and coordinated the study. JG conducted growth experiments. Both authors contributed to model building, data analyzing, and manuscript writing.

Corresponding author

Correspondence to Zhaohui Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1.

Biomass objective function (.docx) (DOCX 56 kb)

ESM 2

Lists of reactions, metabolites, genes, and unique proteins (.xlsx) (XLSX 108 kb)

ESM 3

Model RQ7_iJG408 in SBML format (.xml) (XML 3262 kb)

ESM 4

MEMOTE analysis report of iJG408 (HTML 3714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, J., Xu, Z. Construction and Validation of a Genome-Scale Metabolic Network of Thermotoga sp. Strain RQ7. Appl Biochem Biotechnol 193, 896–911 (2021). https://doi.org/10.1007/s12010-020-03470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03470-z

Keywords

Navigation