Skip to main content

Advertisement

Log in

Acute hepatitis B virus infection model within the host incorporating immune cells and cytokine responses

  • Original Article
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

We formulate and analyze a within-host hepatitis B viral mathematical model for hepatitis B in the acute phase of infection. The model incorporates hepatocytes, hepatitis B virus, immune system cells and cytokine dynamics using a system of ordinary differential equations. We use the model to demonstrate the trends of the hepatitis B infection qualitatively without the effects of immune cells and cytokines. Using these trends, we tested the effects of incorporating the immune cells only and immune cells with cytokine responses at low and high inhibitions on the hepatitis B virus infection. Our results showed that it is impossible to have the immune cells work independently from cytokines when there is an acute hepatitis B virus infection. Therefore, our results suggest that incorporating immune cells and cytokine dynamics in the acute hepatitis B virus infection stage delays infection in the hepatocytes and excluding such dynamics speeds up infection during this phase. Results from this study are useful in developing strategies for control of hepatocellular carcinoma which is caused by hepatitis B virus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmed R, Gray D (1996) Immunological memory and protective immunity: understanding their relation. Science 272(5258):54

    Article  CAS  PubMed  Google Scholar 

  • Bauer AL, Hogue IB, Marino S, Krischner DE (2008) The effects of HIV-1 infection on latent tuberculosis. Math Model Nat Phenom 3(7):229–266

    Article  Google Scholar 

  • Berger A (2000) Th1 and Th2 responses: what are they? Br Med J 321(7258):424

    Article  CAS  Google Scholar 

  • Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, Zhang L, Tu Z, Gao Y, Fu Y et al (2014) Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and m2-like macrophages. PLoS Pathog 10(3):e1004032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Budhu A, Wang XW (2006) The role of cytokines in hepatocellular carcinoma. J Leukoc Biol 80(6):1197–1213

    Article  CAS  PubMed  Google Scholar 

  • Chang K-M, Chisari FV (1999) Immunopathogenesis of hepatitis B virus infection. Clin Liver Dis 3(2):221–239

    Article  Google Scholar 

  • Ciupe SM, Ribeiro RM, Nelson PW, Dusheiko G, Perelson AS (2007a) The role of cells refractory to productive infection in acute hepatitis B viral dynamics. Proc Natl Acad Sci 104(12):5050–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciupe SM, Ribeiro RM, Nelson PW, Perelson AS (2007b) Modeling the mechanisms of acute hepatitis B virus infection. J Theor Biol 247(1):23–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Culshaw RV, Ruan S (2000) A delay-differential equation model of hiv infection of CD4+ T-cells. Math Biosci 165(1):27–39

    Article  CAS  PubMed  Google Scholar 

  • Day J, Friedman A, Schlesinger LS (2009) Modeling the immune rheostat of macrophages in the lung in response to infection. Proc Natl Acad Sci 106(27):11246–11251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eikenberry S, Hews S, Nagy JD, Kuang Y (2009) The dynamics of a delay model of HBV infection with logistic hepatocyte growth. Math Biosci Eng 6:283–299

    Article  PubMed  Google Scholar 

  • Elenkov IJ, Chrousos GP (2002) Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci 966(1):290–303

    Article  CAS  PubMed  Google Scholar 

  • Fausto N (2004) Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39(6):1477–1487

    Article  PubMed  Google Scholar 

  • Friedman A, Hao W (2017) Mathematical modeling of liver fibrosis. Math Biosci Eng 14(1):143–164

    Article  PubMed  Google Scholar 

  • Friedman A, Siewe N (2018) Chronic hepatitis b virus and liver fibrosis: a mathematical model. PloS One 13(4):e0195037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedman A, Turner J, Szomolay B (2008) A model on the influence of age on immunity to infection with mycobacterium tuberculosis. Exp Gerontol 43(4):275–285

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez MDM (2017) Hepatitis B virus. Antimicrobe at http://www.antimicrobe.org/v22.asp

  • Guiot C, Delsanto PP, Carpinteri A, Pugno N, Mansury Y, Deisboeck TS (2006) The dynamic evolution of the power exponent in a universal growth model of tumors. J Theor Biol 240(3):459–463

    Article  PubMed  Google Scholar 

  • Hews S, Eikenberry S, Nagy JD, Kuang Y (2010) Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. J Math Biol 60(4):573–590

    Article  PubMed  Google Scholar 

  • Hickman S, Chan J, Salgame P (2002) Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive t cell polarization. J Immunol 168(9):4636–42

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T (2012) Immunoregulation of hepatitis b virus infection—rationale and clinical application. Nagoya J Med Sci 74(3–4):217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Seishima M (2010) Regulation of the induction and function of cytotoxict lymphocytes by natural killer t cell. BioMed Res Int. https://doi.org/10.1155/2010/641757

    Article  Google Scholar 

  • Kimura J, Takada H, Nomura A, Ohno T, Mizuno Y, Saito M, Kusuhara K, Hara T (2004) Th1 and th2 cytokine production is suppressed at the level of transcriptional regulation in Kawasaki disease. Clin Exp Immunol 137(2):444–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogan Y, Agur Z, Elishmereni M (2013) A mathematical model for the immunotherapeutic control of the th1/th2 imbalance in melanoma. Discrete Contin Dyn Syst Ser B 18(4):1017–1030

    Google Scholar 

  • Krassimira A, Carsten G, Marc B, Hans-Gert H, Michael O, Michael W (2005) Large-scale isolation of human hepatocytes for therapeutic application. Cell Transplant 14(1):845–853

    Google Scholar 

  • Kwun HJ, Jang KL (2004) Natural variants of hepatitis b virus x protein have differential effects on the expression of cyclin-dependent kinase inhibitor p21 gene. Nucleic Acids Res 32(7):2202–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WM (1997) Hepatitis B virus infection. New Engl J Med 337(24):1733–1745

    Article  CAS  PubMed  Google Scholar 

  • Linda JA (2007) An introduction to mathematical biology. Pearson Education Ltd, London

    Google Scholar 

  • Longo D, Fauci A, Kasper D, Hauser S, Jameson J, Loscalzo J (2012) Harrisons manual of medicine. McGraw Hill Professional, New York City

    Google Scholar 

  • Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY et al (2013) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2095–2128

    Article  Google Scholar 

  • Luckheeram RV, Zhou R, Verma AD, Xia B (2012) Cd4+ t cells: differentiation and functions. Clin Dev Immunol. https://doi.org/10.1155/2012/925135

    Article  PubMed  PubMed Central  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276(5309):60–66

    Article  CAS  PubMed  Google Scholar 

  • Min L, Su Y, Kuang Y et al (2008) Mathematical analysis of a basic virus infection model with application to HBV infection. J Math 38(5):1573–1585

    Google Scholar 

  • Mugwagwa T (2005) Mathematical models of coreceptor usage and a dendritic cell-based vaccine during HIV-1 infection. Ph.D. thesis, University of Cape Town

  • Nigade PM, Patil SL, Shinde PR (2011) Bioartificial liver bridge to liver transplantation. Immunology 2(2):77–85

    Google Scholar 

  • Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H (1996) Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci 93(9):4398–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Byrne KJ, Dalgleish AG (2001) Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 85(4):473

    Article  PubMed  PubMed Central  Google Scholar 

  • Organization (WHO) (2002) Hepatitis B

  • Perelson AS, Kirschner DE, De Boer R (1993) Dynamics of HIV infection of CD4+ T cells. Math Biosci 114(1):81–125

    Article  CAS  PubMed  Google Scholar 

  • Phillips S, Chokshi S, Riva A, Evans A, Williams R, Naoumov NV (2010) CD8+ T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J Immunol 184(1):287–295

    Article  CAS  PubMed  Google Scholar 

  • Ramadori G, Armbrust T (2001) Cytokines in the liver. Eur J Gastroenterol Hepatol 13(7):777–784

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Lotze MT (1986) Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Ann Rev Immunol 4(1):681–709

    Article  CAS  Google Scholar 

  • Sachdeva M, Chawla YK, Arora SK (2015) Immunology of hepatocellular carcinoma. World J Hepatol 7(17):2080

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuch A, Hoh A, Thimme R (2014) The role of natural killer cells and cd8 (+) T cells in hepatitis B virus infection. Front Immunol 5(258.10):3389

    Google Scholar 

  • Seeger C, Mason WS (2000) Hepatitis B virus biology. Microbiol Mol Biol Rev 64(1):51–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thieme RH (2003) Mathematics in population biology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1):29–48

    Article  PubMed  Google Scholar 

  • van den Ham H-J, de Boer RJ (2008) From the two-dimensional th1 and th2 phenotypes to high-dimensional models for gene regulation. Int Immunol 20(10):1269–1277

    Article  PubMed  CAS  Google Scholar 

  • Webster GJ, Reignat S, Maini MK, Whalley SA, Ogg GS, King A, Brown D, Amlot PL, Williams R, Vergani D et al (2000) Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 32(5):1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Wu B-K, Li C-C, Chen H-J, Chang J-L, Jeng K-S, Chou C-K, Hsu M-T, Tsai T-F (2006) Blocking of g1/s transition and cell death in the regenerating liver of hepatitis B virus x protein transgenic mice. Biochem Biophys Res Commun 340(3):916–928

    Article  CAS  PubMed  Google Scholar 

  • Yates A, Callard R, Stark J (2004) Combining cytokine signalling with t-bet and gata-3 regulation in th1 and th2 differentiation: a model for cellular decision-making. J Theor Biol 231(2):181–196

    Article  CAS  PubMed  Google Scholar 

  • Youngblood B, Hale JS, Ahmed R (2013) T-cell memory differentiation: insights from transcriptional signatures and epigenetics. Immunology 139(3):277–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J-M, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45(2):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Bevan MJ (2011) CD8+ T cells: foot soldiers of the immune system. Immunity 35(2):161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The support of the DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (Grant No. BA2018/008) and the University of KwaZulu-Natal, School of Mathematics, Statistics and Computer Science, Pietermaritzburg Campus, toward this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the CoE-MaSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Chilenje Manda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} a_{0} & = \frac{\alpha _2 T_4^0}{\mu _4},\quad a_1=\frac{a_0K_4-c_4\mu _4c_2}{K_4+c_4\mu _4},\quad a_2=\frac{a_1\delta N}{\mu _v},\\ a_3 & = \frac{K_{10}}{\mu _{10}},\\ a_4 & = a_3a_2,\quad a_5=\frac{\gamma _{\mathrm{c}} T_8^0}{\mu _{\mathrm{c}}},\quad a_6=\frac{K_{\gamma 1}}{\mu _\gamma },\quad a_7=\frac{\beta \delta N K}{r},\\ a_8 & = \frac{\alpha _1 T_4^0}{\mu _1},\\ a_9 & = ca_2+ca_4,\quad a_{10}=\frac{K_12}{\mu _{12}},\\ a_{11} & = a_5K_{12}+c_{\mathrm{c}} K_{12}+c_{\mathrm{c}} c_{I2}\mu _{12},\\ a_{12} & = a_5K_{12},\quad a_{13}=c_{I2}c_{\mathrm{c}}\mu _{12}c_1,\quad a_{14}=a_6a_5K_{12},\\ a_{15} & = a_{11}a_6+a_{14},\\ a_{16} & = a_6a_{13}+a_{14}c_1,\quad a_{17}=a_{11}a_6+a_{14}+c_\gamma a_{11},\\ a_{18} & = a_6a_{13}+c_\gamma a_{13}+c_\gamma c_1 a_{11},\\ a_{19} & = a_{14}c_1+c_\gamma c_1a_3, \quad a_{20}=a_{15}\delta N a_{10}a_8a_9,\\ a_{21} & = a_{16}\delta N a_{10}a_9a_8,\\ a_{22} & = a_{15}a_8cc_2\delta N a_{10},\quad a_{23}=a_{16}a_8cc_2\delta N a_{10},\\ a_{24} & = K_{12}+c_{I2},\\ a_{25} & = a_{24}a_4a_{17}\mu _v,\quad a_{26}=a_{18}a_{24}a_4\mu _v,\\ a_{27} & = a_{17}c_{I2}c_1a_4\mu _v,\\ a_{28} & = a_{24}a_4\mu _v a_{19},\quad a_{29}=a_{18}a_4c_{I2}c_1a_4\mu _v,\\ a_{30} & = a_{19}a_4c_{I2}c_1a_4\mu _v,\\ a_{31} & = a_{26}+a_{27},\quad a_{32}=a_{28}+a_{29},\quad a_{33}=a_{31}-a_{22},\\ a_{34} & = a_{21}+a_{23}+a_{32},\\ a_{35} & = a_5K_{12}\gamma _{\mathrm{c}}, \quad a_{36}=K_{12}+c_{I2}\mu _{12},\quad a_{37}=c_{I2}\mu _{12}c_1,\\ a_{38} & = a_9a_{35}a_{15},\\ a_{39} & = a_{35}a_{15}cc_2,\quad a_{40}=a_{35}a_{16}a_9,\quad a_{41}=a_{35}cc_2a_{16},\\ a_{42} & = a_{17}a_{36}a_4,\\ a_{43} & = a_{36}a_{18}+a_{37}a_4a_{17},\quad a_{44}=a_{36}a_4a_{19}+a_{37}a_4a_{18},\\ a_{45} & = a_{19}a_{37}a_4,\\ a_{46} & = a_{38}+a_{42}\delta +a_{42}\mu ,\quad a_{47}=a_{43}\mu +a_{43}\delta ,\\ a_{48} & = a_{44}\mu +a_{44}\delta ,\\ a_{49} & = a_{45}\mu +a_{45}\delta , \quad a_{50}=\beta \delta N r \mu _v a_{42}+\beta ^2\delta ^2 N^2 K a_4^2,\\ a_{51} & = \beta ^2 \delta ^2 N^2 K a_4+\beta \delta N r \mu _v a_4,\\ a_{52} & = \beta \delta N r \mu _v a_{44}+\beta ^2 \delta ^2 N^2 K a_{44},\\ a_{53} & = \beta \delta N r \mu _v a_{45}+\beta ^2 \delta ^2 N^2 K a_{45}, \quad a_{54}=\beta \delta N K r \mu _v a_{42},\\ a_{55} & = \beta \delta N K r \mu _v a_4,\\ a_{56} & = \beta \delta N K r \mu _v a_{45},\quad a_{57}=r \mu _v^2 a_{46},\quad a_{58}=r \mu _v^2 a_{47}, \\ a_{59} & = r\mu _v^2 a_{49}, \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manda, E.C., Chirove, F. Acute hepatitis B virus infection model within the host incorporating immune cells and cytokine responses. Theory Biosci. 139, 153–169 (2020). https://doi.org/10.1007/s12064-019-00305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-019-00305-2

Keywords

Navigation