Skip to main content
Log in

Synthetic circuit of inositol phosphorylceramide synthase in Leishmania: a chemical biology approach

  • Short Communication
  • Published:
Journal of Chemical Biology

Abstract

Building circuits and studying their behavior in cells is a major goal of systems and synthetic biology. Synthetic biology enables the precise control of cellular states for systems studies, the discovery of novel parts, control strategies, and interactions for the design of robust synthetic systems. To the best of our knowledge, there are no literature reports for the synthetic circuit construction for protozoan parasites. This paper describes the construction of genetic circuit for the targeted enzyme inositol phosphorylceramide synthase belonging to the protozoan parasite Leishmania. To explore the dynamic nature of the circuit designed, simulation was done followed by circuit validation by qualitative and quantitative approaches. The genetic circuit designed for inositol phosphorylceramide synthase (Biomodels Database—MODEL1208030000) shows responsiveness, oscillatory and bistable behavior, together with intrinsic robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  Google Scholar 

  2. Gardner TS, Faith JJ (2005) Reverse-engineering transcription control networks. Phys Life Rev 2:65–88

    Article  Google Scholar 

  3. Cheng A, Lu TK (2012) Synthetic biology: an emerging engineering discipline. Annu Rev Biomed Eng 14:155–178

    Article  CAS  Google Scholar 

  4. Chen YY, Galloway KE, Smolke CD (2012) Synthetic biology: advancing biological frontiers by building synthetic systems. Genome Biol 13:1–10

    Article  Google Scholar 

  5. Gama-Castro S et al (2008) RegulonDB (version 6.0): gene regulation model of Escherichia K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res 36:D120–D124

    Article  CAS  Google Scholar 

  6. Gupta R, Bhattacharyya A, Agosto-Perez FJ, Wickramasinghe P, Davuluri RV (2011) MPromDb an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-seq experimental data. Nucleic Acids Res 39:D92–D97

    Article  CAS  Google Scholar 

  7. Yamamoto YY, Obokata J (2008) ppdb: a plant promoter database. Nucleic Acids Res 36:D977–D981

    Article  CAS  Google Scholar 

  8. Zhu J, Zhang MQ (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15:607–611

    Article  CAS  Google Scholar 

  9. Mitra A, Kesarwani AK, Pal D, Nagaraja V (2011) WebGeSTer DB—a transcription terminator database. Nucleic Acids Res 39:D129–D135

    Article  CAS  Google Scholar 

  10. Zheng Y, Sriram G (2010) Mathematical modeling: bridging the gap between concept and realization in synthetic biology. J Biomed Biotechnol. doi:10.1155/2010/541609

  11. Heinemann M, Panke S (2006) Synthetic biology—putting engineering into biology. Bioinformatics 22:2790–2799

    Article  CAS  Google Scholar 

  12. Paul WD, Hosam S, Price HP, Deborah FS, Schwarz RT (2007) The protozoan inositol phosphorylceramide synthase: a novel drug target which defines a new class of sphingolipid synthase. J Biol Chem 281:28200–28209

    Google Scholar 

  13. Mandlik V, Shinde S, Chaudhary A, Singh S (2012) Biological network modeling identifies IPCS in Leishmania as a therapeutic target. Integr Biol 4:1130–1142

    Article  CAS  Google Scholar 

  14. Pham E, Li I, Truong K (2008) Computational modeling approaches for studying of synthetic biological networks. Curr Bioinforma 3:1–12

    Google Scholar 

  15. Morrissey ER, Juárez MA, Denby KJ, Burroughs NJ (2011) Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression. Biostatistics 12(4):682–694

    Article  Google Scholar 

  16. Morrissey ER, Juarez MA, Denby KJ, Burroughs NJ (2010) On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics 26:2305–2312

    Article  CAS  Google Scholar 

  17. Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  CAS  Google Scholar 

  18. Haseltine EL, Arnold FH (2007) Synthetic gene circuits: design with directed evolution. Annu Rev Biophys Biomol Struct 36:1–19

    Article  CAS  Google Scholar 

  19. Cazzanigaa P, Dario P, Daniela B, Mauri G (2006) Tau leaping stochastic simulation method in P systems. Membr Comput: Lect Notes Comput Sci 4361:298–313

    Article  Google Scholar 

  20. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22:3067–3074

    Article  CAS  Google Scholar 

  21. Morrissey E R. (2011) GRENITS: Gene Regulatory Network Inference Using Time Series. Systems Biology Doctoral Training Centre

  22. Mussel C, Hopfensitz M, Kestler HA (2010) BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26:1378–1380

    Article  Google Scholar 

  23. Batagelj V, Mrvar A (2003) Pajek—analysis and visualization of large networks. Graph Drawing Softw 41:871

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. SC Mande, Director NCCS for supporting the Bioinformatics and High Performance Computing Facility. Vineetha Mandlik acknowledges the financial support as Junior Research Fellow of Department of Biotechnology, Government of India. The work was supported by the Department of Biotechnology, New Delhi, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailza Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

DOCX 3,588 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandlik, V., Limbachiya, D., Shinde, S. et al. Synthetic circuit of inositol phosphorylceramide synthase in Leishmania: a chemical biology approach. J Chem Biol 6, 51–62 (2013). https://doi.org/10.1007/s12154-012-0089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-012-0089-7

Keywords

Navigation