Emergence of p53 mutant cisplatin-resistant ovarian carcinoma cells following drug exposure: spontaneously mutant selection

Cell Growth Differ. 1999 Jul;10(7):473-8.

Abstract

We have previously shown that p53 mutations are associated with cisplatin resistance in ovarian carcinoma IGROV-1/Pt 1 cells. The relationship between p53 status and the development of resistance has not been completely elucidated; in particular, the biological mechanisms behind the acquired drug-resistant p53-mutant phenotype were not clearly explained. Thus, in this study, we investigated whether the p53 mutations found in IGROV-1/Pt 1 cells (270 and 282 codons) resulted from selection, under the selective pressure of the cytotoxic treatment, of a spontaneously mutant cell population preexistent in the cisplatin-sensitive parental cell line (IGROV-1) or were induced by drug (genotoxic) treatment. For this purpose, an allele-specific PCR approach was used. Primers carrying the desired mutations (T-->A codon 270, C-->T codon 282) in the 3' terminus, and the corresponding wild-type primers were used to amplify genomic DNA from the original IGROV-1 cell line used to select the mutant IGROV-1/Pt 1. To increase sensitivity, we hybridized blots of the PCRs with the radiolabeled PCR fragment from IGROV-1/Pt 1. Amplification was obtained for IGROV-1 DNA with the mutated allele-specific primers, indicating the preexistence of a mutated population in the IGROV-1 cell line. Titration experiments suggested that the frequency of the mutated alleles was <0.1%. Single-strand conformation polymorphism and allele-specific PCR analysis of the IGROV-1/Pt 0.1 cells, which are less resistant to cisplatin than IGROV-1/Pt 1 cells and which carry both mutant and wild-type p53 alleles with a wild-type predominance, suggested a progressive selection of the mutant population by cisplatin treatment. This is the first observation that indicates that a subpopulation of p53 mutant cells can occasionally be selected by cisplatin treatment. Thus, considering the susceptibility to spontaneous mutations of the p53 gene in advanced ovarian carcinoma, the selection process resulting in emergence of p53 mutant tumors is a possible origin of resistance of ovarian carcinoma to DNA-damaging agents. The survival advantage of p53 mutant cells in the presence of genotoxic agents could be related to a loss of susceptibility to p53-dependent apoptosis and to defects in checkpoints pathways, resulting in genomic instability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / toxicity
  • Cisplatin / pharmacology*
  • Cisplatin / toxicity
  • Drug Resistance, Neoplasm
  • Female
  • Genes, p53 / genetics*
  • Humans
  • Mutation, Missense
  • Ovarian Neoplasms / genetics*
  • Ovarian Neoplasms / metabolism
  • Ovarian Neoplasms / pathology
  • Polymerase Chain Reaction
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Cisplatin