Biochemical characterization of various catalytic complexes of the brain platelet-activating factor acetylhydrolase

J Biol Chem. 1999 Nov 5;274(45):31827-32. doi: 10.1074/jbc.274.45.31827.

Abstract

Brain intracellular platelet-activating factor acetylhydrolase (PAF-AH) isoform I is a member of a family of complex enzymes composed of mutually homologous alpha(1) and alpha(2) subunits, both of which account for catalytic activity, and the beta subunit. We previously demonstrated that the expression of one catalytic subunit, alpha(1), is developmentally regulated, resulting in a switching of the catalytic complex from alpha(1)/alpha(2) to alpha(2)/alpha(2) during brain development (Manya, H., Aoki, J., Watanabe, M., Adachi, T., Asou, H., Inoue, Y., Arai, H., and Inoue, K. (1998) J. Biol. Chem. 273, 18567-18572). In this study, we explored the biochemical differences in three possible catalytic dimers, alpha(1)/alpha(1), alpha(1)/alpha(2), and alpha(2)/alpha(2). The alpha(2)/alpha(2) homodimer exhibited different substrate specificity from the alpha(1)/alpha(1) homodimer and the alpha(1)/alpha(2) heterodimer, both of which showed similar substrate specificity. The alpha(2)/alpha(2) homodimer hydrolyzed PAF and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylethanolamine (AAGPE) most efficiently among 1-O-alkyl-2-acetyl-phospholipids. In contrast, both alpha(1)/alpha(1) and alpha(1)/alpha(2) hydrolyzed 1-O-alkyl-2-acetyl-sn-glycero-3-phosphoric acid more efficiently than PAF. AAGPE was the poorest substrate for these enzymes. The beta subunit bound to all three catalytic dimers but modulated the enzyme activity in a catalytic dimer composition-dependent manner. The beta subunit strongly accelerated the enzyme activity of the alpha(2)/alpha(2) homodimer but rather suppressed the activity of the alpha(1)/alpha(1) homodimer and had little effect on that of the alpha(1)/alpha(2) heterodimer. The (His(149) to Arg) mutant beta, which has been recently identified in isolated lissencephaly sequence patients, lost the ability to either associate with the catalytic complexes or modulate their enzyme activity. The enzyme activity of PAF-AH isoform I may be regulated in multiple ways by switching the composition of the catalytic subunit and by manipulating the beta subunit.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-Alkyl-2-acetylglycerophosphocholine Esterase
  • Amino Acid Substitution
  • Animals
  • Brain / enzymology*
  • Catalysis
  • Mutagenesis, Site-Directed
  • Phospholipases A / genetics
  • Phospholipases A / metabolism*
  • Phospholipid Ethers / metabolism
  • Platelet Activating Factor / metabolism*
  • Recombinant Proteins / metabolism
  • Spodoptera
  • Structure-Activity Relationship
  • Substrate Specificity

Substances

  • Phospholipid Ethers
  • Platelet Activating Factor
  • Recombinant Proteins
  • acetyl glyceryl ether phosphorylethanolamine
  • Phospholipases A
  • 1-Alkyl-2-acetylglycerophosphocholine Esterase