Overexpression of insulin-like growth factor II (IGFII) in ZR-75-1 human breast cancer cells: higher threshold levels of receptor (IGFIR) are required for a proliferative response than for effects on specific gene expression

Cell Prolif. 1999 Oct;32(5):271-87. doi: 10.1046/j.1365-2184.1999.3250271.x.

Abstract

Previous transfection experiments using a zinc-inducible expression vector have shown that overexpression of insulin-like growth factor II (IGFII) in MCF7 human breast cancer cells can reduce dependence on oestrogen for cell growth in vitro (DALY RJ, HARRIS WH, WANG DY, DARBRE PD. (1991) Cell Growth Differentiation 2, 457-464.). Parallel transfections now performed into another oestrogen-dependent human breast cancer cell line (ZR-75-1) yielded three clones of transfected ZR-75-1 cells that produced levels of zinc-inducible IGFII mRNA and secreted mature IGFII protein similar to those found in the transfected MCF7 cells. However, unlike in MCF7 cells, no resulting effects were found on cell growth in the ZR-75-1 clones, even though the ZR-75-1 clones possessed receptors capable of binding 125I-IGFI and showed a growth response to exogenously added IGFII. Medium conditioned by the ZR-75-1 clones could stimulate growth of untransfected MCF7 cells, indicating that the secreted IGFII protein was bioactive. Furthermore, zinc-induced IGFII was capable of increasing both pS2 mRNA levels and CAT activity from a transiently transfected AP1-CAT gene in the ZR-75-1 clones. Constitutive co-overexpression of the protein processing enzyme PC2 resulted in reduced levels of large forms of zinc-inducible IGFII, but zinc treatment still produced no effect on cell growth rate. Finally, however, constitutive co-overexpression of the type I IGF receptor (IGFIR) did result in zinc-inducible increased basal cell growth and reduced dependence on oestrogen for cell growth. These results demonstrate that while overexpression of IGFII per se was sufficient to deregulate MCF7 cell growth, the ZR-75-1 cells are limited in their proliferative response by their intrinsic receptor levels. However, although the proliferative response was limited, molecular responses (expression of pS2 and AP1-CAT) were not limited, indicating that different cellular responses can have different threshold receptor level requirements.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / genetics*
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Cell Division / drug effects
  • Estradiol / pharmacology
  • Female
  • Gene Expression
  • Humans
  • Insulin-Like Growth Factor II / genetics*
  • Insulin-Like Growth Factor II / metabolism
  • Insulin-Like Growth Factor II / pharmacology
  • Neoplasms, Hormone-Dependent / genetics
  • Neoplasms, Hormone-Dependent / metabolism
  • Neoplasms, Hormone-Dependent / pathology
  • Proprotein Convertase 2
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA, Neoplasm / genetics
  • RNA, Neoplasm / metabolism
  • Receptor, IGF Type 1 / genetics
  • Receptor, IGF Type 1 / metabolism*
  • Subtilisins / genetics
  • Transfection
  • Tumor Cells, Cultured
  • Zinc / pharmacology

Substances

  • RNA, Messenger
  • RNA, Neoplasm
  • Estradiol
  • Insulin-Like Growth Factor II
  • Receptor, IGF Type 1
  • Subtilisins
  • Proprotein Convertase 2
  • Zinc