Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase

J Cell Sci. 2000 Jan:113 Pt 2:227-35. doi: 10.1242/jcs.113.2.227.

Abstract

Collagenase-3 (MMP-13) is a human matrix metalloproteinase specifically expressed by transformed squamous epithelial cells, i.e. squamous cell carcinoma (SCC) cells in culture and in vivo. Here, we have elucidated the signaling pathways regulating MMP-13 expression in transformed human epidermal keratinocytes, i.e. ras-transformed HaCaT cell line A-5 and cutaneous SCC cell line (UT-SCC-7). Treatment with tumor necrosis factor-(alpha) (TNF-(alpha) resulted in activation of extracellular signal-regulated kinase (ERK)1,2, Jun N-terminal kinase and p38 mitogen-activated protein kinase (MAPK) in both cell lines. In addition, transforming growth factor-(beta) (TGF-(beta) activated p38 MAPK in both cell lines, and ERK2 in A-5 cells. Selective inhibition of p38 activity with SB 203580 abolished the enhancement of MMP-13, as well as collagenase-1 (MMP-1) and 92-kDa gelatinase (MMP-9) expression by TNF-(alpha) and TGF-(beta). Blocking the ERK1, 2 pathway by PD 98059 had no effect on the induction of MMP-13 expression by TNF-(alpha) or TGF-(beta), but potently suppressed MMP-1 and MMP-9 production. Inhibition of p38 activity by SB 203580 also suppressed collagenolytic activity produced by both cell lines and inhibited invasion of TNF-(alpha) or TGF-(beta) stimulated A-5 cells through type I collagen and reconstituted basement membrane (Matrigel). These results show that activation of p38 MAPK pathway plays a crucial role in the invasive phenotype of transformed squamous epithelial cells, suggesting p38 MAPK as a target to specifically inhibit their invasion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium-Calmodulin-Dependent Protein Kinases / antagonists & inhibitors
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism*
  • Carcinoma, Squamous Cell / enzymology
  • Carcinoma, Squamous Cell / genetics
  • Cell Line, Transformed
  • Collagenases / genetics*
  • Collagenases / metabolism
  • Enzyme Activation / drug effects
  • Gene Expression / drug effects
  • Genes, fos / drug effects
  • Genes, jun / drug effects
  • Humans
  • JNK Mitogen-Activated Protein Kinases
  • Keratinocytes / enzymology*
  • Matrix Metalloproteinase 1 / genetics*
  • Matrix Metalloproteinase 1 / metabolism
  • Matrix Metalloproteinase 13
  • Matrix Metalloproteinase 9 / biosynthesis
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / metabolism
  • Transforming Growth Factor beta / pharmacology
  • Tumor Cells, Cultured
  • Tumor Necrosis Factor-alpha / pharmacology
  • p38 Mitogen-Activated Protein Kinases

Substances

  • Transforming Growth Factor beta
  • Tumor Necrosis Factor-alpha
  • Calcium-Calmodulin-Dependent Protein Kinases
  • JNK Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Collagenases
  • MMP13 protein, human
  • Matrix Metalloproteinase 13
  • Matrix Metalloproteinase 9
  • Matrix Metalloproteinase 1