Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities

Cancer Res. 2000 Jan 15;60(2):417-24.

Abstract

Deregulation of G1-S transition control in cell cycle is one of the important mechanisms in the development of human tumors including astrocytic gliomas. We have previously reported that approximately two-thirds of glioblastomas (GBs) had abnormalities of G1-S transition control either by mutation/homozygous deletion of RB1 or CDKN2A p16INK4A), or amplification of CDK4 (K. Ichimura et al., Oncogene, 13: 1065-1072, 1996). However, abnormalities of G1-S transition control genes may induce p53-dependent apoptosis in cells. Recent investigations suggest that p14ARF is induced in response to abnormal cell cycle entry and results in p53 accumulation by inhibiting MDM2-mediated transactivational silencing and degradation of p53. To investigate the roles of the G1-S transition control system and the p14ARF/MDM2/p53 pathway in the development of astrocytic gliomas, we examined abnormalities of genes involved in these regulatory pathways in a total of 190 primary human astrocytic gliomas of different malignancy grades [136 GBs, 39 anaplastic astrocytomas (AAs) and 15 astrocytomas (As)]. Sixty-seven percent of GBs (91/136) and 21% of AAs (8/39) had abnormalities of the G1-S control system either by mutation/homozygous deletion of RB1, CDKN2A or CDKN2B, or amplification of CDK4. Seventy-six percent of GBs (103 of 136), 72% of AAs (28 of 39), and 67% of As (10 of 15) had deregulated p53 pathway either by mutation of TP53, amplification of MDM2, or homozygous deletion/mutation of p14ARF. When all of the data were combined and compared, 96% of GBs (87 of 91) and 88% of AAs (7 of 8) with abnormal G1-S transition control also had deregulated p53 pathway. Thus, we demonstrate that deregulation of the G1-S transition control system was almost always accompanied by inactivation of the p53 pathway, clearly illustrating the cooperative roles of these two systems in the development/progression of primary human astrocytic gliomas.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Astrocytoma / genetics*
  • Astrocytoma / pathology
  • Brain Neoplasms / genetics*
  • Brain Neoplasms / pathology
  • Cell Cycle / genetics*
  • DNA Mutational Analysis
  • Exons
  • G1 Phase
  • Gene Silencing
  • Genes, p53*
  • Glioblastoma / genetics
  • Glioblastoma / pathology
  • Humans
  • Mutation*
  • Nuclear Proteins*
  • Proteins / genetics*
  • Proteins / metabolism
  • Proto-Oncogene Proteins / genetics*
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-mdm2
  • Proto-Oncogenes
  • S Phase
  • Sequence Deletion
  • Transcriptional Activation
  • Tumor Suppressor Protein p14ARF
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Nuclear Proteins
  • Proteins
  • Proto-Oncogene Proteins
  • Tumor Suppressor Protein p14ARF
  • Tumor Suppressor Protein p53
  • MDM2 protein, human
  • Proto-Oncogene Proteins c-mdm2