The role of p21 in interferon gamma-mediated growth inhibition of human breast cancer cells

Cell Growth Differ. 2000 Jun;11(6):335-42.

Abstract

IFN-gamma-mediated growth inhibition requires signal transducers and activators of transcription (STAT)-1 activation and may require induction of the cyclin-dependent kinase inhibitor p21. Using an electrophoretic mobility shift assay, we identified STAT1 activation after IFN-gamma treatment in breast cancer cell lines. Accordingly, IFN-gamma inhibited proliferation of monolayer cultured MCF-7 and MDA-MB-231 breast cancer cells. Interestingly, IFN-gamma inhibited anchorage-independent growth of MCF-7 cells but had no effect on MDA-MB-231 colony formation. Because p21 has been shown to play a role in anchorage-independent growth and is a transcriptional target of STAT1, we examined the effect of IFN-gamma on p21 mRNA. We found that IFN-gamma induced p21 mRNA in MCF-7 cells but not in MDA-MB-231 cells. Furthermore, IFN-gamma induced activation of a p21 promoter-luciferase reporter construct that contained the STAT1-inducible element in MCF-7 cells, but not in MDA-MB-231 cells. IFN-gamma treatment resulted in increased p21 protein in MCF-7 cells, whereas MDA-MB-231 cells did not appear to express detectable p21, even after IFN-gamma treatment. However, in MDA-MB-231 cells, p21 protein was detected only after proteosome inhibition, suggesting that degradation may be responsible for the undetectable level of p21 in these cells, despite the abundant mRNA levels. Finally, focus formation of MDA-MB-231 cells was inhibited by overexpression of p21. In conclusion, STAT1 activation does not appear to be sufficient for IFN-gamma-mediated growth inhibition. Furthermore, the role of p21 appears to be complex because monolayer growth inhibition occurs in the absence of p21, but anchorage-independent growth inhibition may require p21. Breast cancer cells may provide a unique model for further study of IFN-gamma signaling.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Blotting, Western
  • Breast Neoplasms / metabolism*
  • Cell Adhesion
  • Cell Cycle
  • Cell Division
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins / genetics
  • Cyclins / metabolism*
  • Cyclins / physiology*
  • Cysteine Endopeptidases / metabolism
  • DNA / metabolism
  • DNA-Binding Proteins / metabolism
  • Enzyme Activation
  • Female
  • Flow Cytometry
  • Humans
  • Interferon-gamma / metabolism*
  • Luciferases / metabolism
  • Multienzyme Complexes / metabolism
  • Promoter Regions, Genetic
  • Proteasome Endopeptidase Complex
  • Ribonucleases / metabolism
  • STAT1 Transcription Factor
  • Time Factors
  • Trans-Activators / metabolism
  • Transcription, Genetic
  • Transcriptional Activation
  • Transfection
  • Tumor Cells, Cultured
  • Up-Regulation

Substances

  • CDKN1A protein, human
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins
  • DNA-Binding Proteins
  • Multienzyme Complexes
  • STAT1 Transcription Factor
  • STAT1 protein, human
  • Trans-Activators
  • Interferon-gamma
  • DNA
  • Luciferases
  • Ribonucleases
  • Cysteine Endopeptidases
  • Proteasome Endopeptidase Complex