Expression of the aryl hydrocarbon receptor/transcription factor (AhR) and AhR-regulated CYP1 gene transcripts in a rat model of mammary tumorigenesis

Breast Cancer Res Treat. 2000 Sep;63(2):117-31. doi: 10.1023/a:1006443104670.

Abstract

Exposure to ubiquitous environmental chemicals, such as polycyclic aromatic hydrocarbons (PAH), may contribute to human breast cancer. In animals, PAH induce tumors in part by activating the aryl hydrocarbon receptor (AhR)/transcription factor. Historically, investigations into AhR-regulated carcinogenesis have focused on AhR-dependent transcriptional regulation of cytochrome P450 (CYP) enzymes which oxidize PAH to mutagenic intermediates. However, recent studies suggest that the AhR directly regulates cell growth. Given the postulated role of the AhR in carcinogenesis, we predicted that: (1) tissue predisposed to PAH tumorigenesis would express the AhR and (2) aberrant AhR and/or AhR-regulated gene expression would accompany malignant transformation. To test these hypotheses, AhR and CYP1 protein and/or mRNA levels were evaluated in rat mammary tumors induced with 7, 12-dimethylbenz[a]anthracene (DMBA), a prototypic PAH and AhR ligand. Results indicate modest AhR expression in normal mammary myoepithelial and ductal epithelial cells. In contrast, high AhR levels were detected in DMBA-induced tumors. Nuclear AhR localization in tumors suggested constitutive AhR activation. In situ hybridization and quantitative RT-PCR assays indicated high AhR mRNA levels in neoplastic epithelial cells. While both AhR-regulated CYP1A1 and CYP1B1 mRNAs were induced in breast tissue within 6 h of DMBA gavage, only CYP1B1 mRNA remained elevated in tumors. These results: (1) help explain targeting of breast tissue by carcinogenic PAH, (2) imply that AhR and CYP1B1 hyper-expression represent molecular biomarkers for, at least, PAH-induced mammary cell transformation, and (3) suggest mechanisms through which the AhR may contribute to carcinogenesis well after exogenous AhR ligands have been eliminated.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 9,10-Dimethyl-1,2-benzanthracene
  • Animals
  • Aryl Hydrocarbon Hydroxylases*
  • Cytochrome P-450 CYP1A1 / genetics*
  • Cytochrome P-450 CYP1B1
  • Cytochrome P-450 Enzyme System / genetics*
  • Female
  • Mammary Glands, Animal / metabolism
  • Mammary Neoplasms, Experimental / chemically induced
  • Mammary Neoplasms, Experimental / metabolism*
  • RNA, Messenger / analysis*
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Aryl Hydrocarbon / analysis*

Substances

  • RNA, Messenger
  • Receptors, Aryl Hydrocarbon
  • 9,10-Dimethyl-1,2-benzanthracene
  • Cytochrome P-450 Enzyme System
  • Aryl Hydrocarbon Hydroxylases
  • CYP1B1 protein, human
  • Cyp1b1 protein, rat
  • Cytochrome P-450 CYP1A1
  • Cytochrome P-450 CYP1B1