Genetics of iron storage and hemochromatosis

Drug Metab Dispos. 2001 Apr;29(4 Pt 2):495-9.

Abstract

The regulation of total body iron is important to all organisms. In mammals, the iron content of the body is controlled almost entirely through regulation of absorption. The precise mechanism by which iron is absorbed and the manner in which the absorption is regulated is unknown, but a number of different proteins that are involved either in the transport process itself or its regulation have been identified. These include HFE, a class 1 HLA molecule involved in hereditary hemochromatosis, the divalent metal transporter (DMT-1), hephaestin, the transferrin receptor, and mobilferrin. Iron overload occurs in a number of hereditary disorders including atransferrinemia, aceruloplasminemia, X-linked hereditary sideroblastic anemia, thalassemia major, congenital dyserythropoietic anemia, and various red cell enzyme deficiencies. In Europeans, most cases of hereditary hemochromatosis are due to mutations of the HFE gene. There are two major mutations of this gene c.845G-->A (C282Y) and c.187C-->G (H63D). These mutations have extraordinarily high prevalence in northern Europe and approximately five in a thousand Europeans are homozygous for the 845A mutation. The penetrance of even the homozygous state for the 845A mutation is very low and that for the compound heterozygote 845A/187G, which is also associated with hemochromatosis, is even lower. The reason for the markedly variable penetrance that exists in this disorder remains unknown.

Publication types

  • Congress
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Child
  • Female
  • HLA Antigens / genetics
  • Hemochromatosis / genetics*
  • Hemochromatosis Protein
  • Histocompatibility Antigens Class I / genetics
  • Humans
  • Iron / metabolism*
  • Male
  • Membrane Proteins*
  • Mutation
  • Phenotype

Substances

  • HFE protein, human
  • HLA Antigens
  • Hemochromatosis Protein
  • Histocompatibility Antigens Class I
  • Membrane Proteins
  • Iron