Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation

Mol Cell Biol. 2001 Aug;21(16):5577-90. doi: 10.1128/MCB.21.16.5577-5590.2001.

Abstract

The fusion gene AML1-ETO is the product of t(8;21)(q22;q22), one of the most common chromosomal translocations associated with acute myeloid leukemia. To investigate the impact of AML1-ETO on hematopoiesis, tetracycline-inducible AML1-ETO-expressing cell lines were generated using myeloid cells. AML1-ETO is tightly and strongly induced upon tetracycline withdrawal. The proliferation of AML1-ETO(+) cells was markedly reduced, and most of the cells eventually underwent apoptosis. RNase protection assays revealed that the amount of Bcl-2 mRNA was decreased after AML1-ETO induction. Enforced expression of Bcl-2 was able to significantly delay, but not completely overcome, AML1-ETO-induced apoptosis. Prior to the onset of apoptosis, we also studied the ability of AML1-ETO to modulate differentiation. AML1-ETO expression altered granulocytic differentiation of U937T-A/E cells. More significantly, this change of differentiation was associated with the down-regulation of CCAAT/enhancer binding protein alpha (C/EBPalpha), a key regulator of granulocytic differentiation. These observations suggest a dichotomy in the functions of AML1-ETO: (i) reduction of granulocytic differentiation correlated with decreased expression of C/EBPalpha and (ii) growth arrest leading to apoptosis with decreased expression of CDK4, c-myc, and Bcl-2. We predict that the preleukemic AML1-ETO(+) cells must overcome AML1-ETO-induced growth arrest and apoptosis prior to fulfilling their leukemogenic potential.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Apoptosis / physiology*
  • Cell Differentiation / genetics
  • Cell Division / genetics
  • Core Binding Factor Alpha 2 Subunit
  • Gene Expression Regulation
  • Hematopoiesis / physiology*
  • Humans
  • Leukemia, Myeloid / genetics
  • Leukemia, Myeloid / pathology
  • Leukemia, Myeloid / physiopathology
  • Oncogene Proteins, Fusion / physiology*
  • RUNX1 Translocation Partner 1 Protein
  • Transcription Factors / physiology*
  • Translocation, Genetic
  • Tumor Cells, Cultured

Substances

  • AML1-ETO fusion protein, human
  • Core Binding Factor Alpha 2 Subunit
  • Oncogene Proteins, Fusion
  • RUNX1 Translocation Partner 1 Protein
  • Transcription Factors