Nucleocytoplasmic shuttling of Smad1 conferred by its nuclear localization and nuclear export signals

J Biol Chem. 2001 Oct 19;276(42):39404-10. doi: 10.1074/jbc.M103117200. Epub 2001 Aug 16.

Abstract

Smad1 mediates signaling by bone morphogenetic proteins (BMPs). In the resting state, Smad1 is found in both the nucleus and cytosol. BMP addition triggers Smad1 serine phosphorylation, binding of Smad4, and its accumulation in the nucleus. Mutations in the Smad1 N-terminal basic nuclear localization signal (NLS)-like motif, conserved among all Smad proteins, eliminated its ligand-induced nuclear translocation without affecting its other functions, including DNA binding and complex formation with Smad4. Addition of leptomycin B, an inhibitor of nuclear export, induced rapid nuclear accumulation of Smad1, whereas overexpression of CRM1, the receptor for nuclear export, resulted in Smad1 re-localization to the cytoplasm and inhibition of BMP-induced nuclear accumulation. Thus, in addition to the NLS, Smad1 also contains a functional nuclear export signal (NES). We identified a leucine-rich NES motif in the C terminus of Smad1; its disruption led to constitutive Smad1 nuclear distribution. Reporter gene activation assays demonstrated that both the NLS and NES are required for optimal transcriptional activation by Smad1. Despite its constitutive nuclear accumulation, a Smad1 NES mutant did not display higher basal reporter gene activity. We conclude that Smad1 is under constant nucleocytoplasmic shuttling conferred by its NLS and NES; nuclear accumulation after ligand-induced phosphorylation represents a change in the balance of the activities of these opposing signals and is essential for transcriptional activation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Active Transport, Cell Nucleus
  • Amino Acid Sequence
  • Animals
  • COS Cells
  • Cell Line
  • Cell Nucleus / metabolism*
  • Cytoplasm / metabolism*
  • DNA-Binding Proteins / biosynthesis*
  • DNA-Binding Proteins / metabolism*
  • Exportin 1 Protein
  • Fatty Acids, Unsaturated / pharmacology
  • Genes, Reporter
  • Green Fluorescent Proteins
  • Humans
  • Karyopherins / biosynthesis
  • Leucine / metabolism
  • Ligands
  • Luciferases / metabolism
  • Luminescent Proteins / metabolism
  • Microscopy, Fluorescence
  • Molecular Sequence Data
  • Phosphorylation
  • Protein Binding
  • Protein Structure, Tertiary
  • Receptors, Cytoplasmic and Nuclear*
  • Recombinant Fusion Proteins
  • Sequence Homology, Amino Acid
  • Smad Proteins
  • Smad1 Protein
  • Trans-Activators / biosynthesis*
  • Trans-Activators / metabolism*
  • Transcriptional Activation
  • Transfection

Substances

  • DNA-Binding Proteins
  • Fatty Acids, Unsaturated
  • Karyopherins
  • Ligands
  • Luminescent Proteins
  • Receptors, Cytoplasmic and Nuclear
  • Recombinant Fusion Proteins
  • SMAD1 protein, human
  • Smad Proteins
  • Smad1 Protein
  • Trans-Activators
  • Green Fluorescent Proteins
  • Luciferases
  • Leucine
  • leptomycin B