Brain-gut axis in gastroprotection by leptin and cholecystokinin against ischemia-reperfusion induced gastric lesions

J Physiol Pharmacol. 2001 Dec;52(4 Pt 1):583-602.

Abstract

Leptin, a product of ob gene controlling food intake, has recently been detected in the stomach and shown to be released by CCK and implicated in gastroprotection against various noxious agents but it is unknown whether centrally applied leptin influences ischemia-reperfusion (I/R)-induced gastric erosions that progress into deeper gastric ulcerations. In this study we compared the effects of leptin and CCK-8 applied intracerebroventricularly (i.c.v.) or intraperitoneally (i.p.) on gastric mucosal lesions induced by I/R and topical application of 75% ethanol. Several major series of Wistar rats were used to examine the effects of leptin and CCK applied centrally on gastroprotection against I/R and ethanol in rats with A) vagotomy by cutting of vagal nerves, B) suppression of NO-synthase with L-NNA (20 mg/kg i.p.), C) inactivation of sensory nerves by capsaicin (125 mg/kg s.c.) and D) inhibition of CGRP receptors with CGR(8-37) (100 microg/kg i.p.) applied with or without the i.c.v. pretreatment with leptin or CCK-8. Rats were anesthetized 1 h after ethanol administration or at 3 h and 3 days upon the end of ischemia to measure the gastric blood flow (GBF) and then to determine the area of gastric lesions by planimetry. Blood was withdrawn for the measurement of plasma leptin and gastrin levels by radioimmunoassay (RIA). Leptin (0.1-20 microg/kg i.p.) dose-dependently attenuated gastric lesions induced by 75% ethanol and I/R; the dose reducing these lesions by 50% (ED50) was 8 microg/kg and 6 microg/kg, respectively and this protective effect was similar to that obtained with CCK-8 applied in a standard dose of 10 microg/kg i.p. This protective effect of leptin was accompanied by a significant increase in GBF and plasma gastrin levels whereas CCK-8 increased plasma leptin levels but failed to affect plasma gastrin levels. Leptin and CCK-8 applied i.c.v. in a dose of 625 ng/rat reduced significantly the area of I/R induced gastric lesions and raised the GBF and plasma leptin levels with the extent similar to those achieved with peripheral administration of leptin or CCK-8 (10 microg/kg i.p.). The protective and hyperemic effects of centrally administered leptin or CCK-8 (625 ng/rat i.c.v.) were completely abolished by vagotomy and significantly attenuated by sensory denervation with capsaicin or by CGRP antagonist, CGRP(8-37). The pretreatment with L-NNA to inhibit NO-synthase activity attenuated significantly the protective and hyperemic effects of CCK but not those of leptin while capsaicin denervation counteracted leptin-induced protection and rise in the GBF but attenuated significantly those of CCK. We conclude that: 1) central leptin exerts a potent gastroprotective activity against I/R-induced gastric erosions that progress into deeper gastric lesions and this protection depends upon vagal activity and sensory nerves and involves hyperemia probably mediated by NO and 2) leptin mimics the gastroprotective effect of CCK and may be implicated in the protective and hyperemic actions of this peptide against mucosal damage evoked by I/R.

MeSH terms

  • Animals
  • Brain / physiology*
  • Calcitonin Gene-Related Peptide / physiology
  • Cytoprotection
  • Gastric Mucosa / blood supply
  • Gastric Mucosa / drug effects*
  • Gastric Mucosa / pathology
  • Gastrins / blood
  • Leptin / pharmacology*
  • Male
  • Neurons, Afferent / physiology
  • Nitric Oxide / physiology
  • Rats
  • Rats, Wistar
  • Regional Blood Flow / drug effects
  • Reperfusion Injury / prevention & control*
  • Sincalide / pharmacology*
  • Vagus Nerve / physiology

Substances

  • Gastrins
  • Leptin
  • Nitric Oxide
  • Calcitonin Gene-Related Peptide
  • Sincalide