Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations

Mod Pathol. 2002 Apr;15(4):454-61. doi: 10.1038/modpathol.3880546.

Abstract

beta-Catenin plays a fundamental role in the regulation of the E-cadherin-catenin cell adhesion complex. It also plays a role in the Wnt signaling pathway by activating T-cell factor- and lymphoid enhancer factor-regulated gene transcription. The level of beta-catenin in cells is tightly controlled in a multiprotein complex, and mutations in the glycogen synthase kinase 3beta (GSK-3beta) phosphorylation sites of the beta-catenin gene (CTNNB1) result in nuclear and/or cytoplasmic accumulation of beta-catenin and constitutive transactivation of T-cell factor and lymphoid enhancer factor target genes, a mechanism occurring in many cancers. Melanoma cell lines may harbor beta-catenin mutations; in vivo, however, cellular accumulation of beta-catenin is rarely caused by CTNNB1 mutations. In our study, 43 primary cutaneous melanoma and 30 metastases were screened for CTNNB1 exon 3 mutations by using a denaturing gradient gel electrophoresis technique and sequencing. beta-Catenin mutations were found in 2 primary melanomas and 1 metastatic melanoma and were not correlated with nuclear accumulation of beta-catenin in these cases. Cellular expression of beta-catenin was evaluated by immunohistochemistry and by reverse polymerase chain reaction (RT-PCR) in 80 and 70 cases, respectively. Immunohistochemistry revealed a significant loss of membranous beta-catenin staining between the primary and metastatic melanomas as well as between radial and vertical growth phase. RT-PCR showed a significant inverse correlation between the amount of RNA and the proportion of cells with membranous expression of beta-catenin (P =.0015); no correlation existed between the amount of RNA and the number of cells with nuclear or cytoplasmic expression of beta-catenin. In conclusion, nuclear expression of beta-catenin is seen in cutaneous melanoma but, in contrast to the case of many other cancers, does not correlate with tumor stage or mutation status. A combination of immunohistochemistry and RT-PCR showed that down-regulation of membranous beta-catenin was associated with an increased amount of beta-catenin RNA in primary or metastatic melanoma. Our results suggest that posttranslational events, rather than CTNNB1 mutations, are responsible for the altered distribution of beta-catenin in cutaneous melanoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Cell Membrane / metabolism*
  • Cytoskeletal Proteins / genetics*
  • Cytoskeletal Proteins / metabolism
  • DNA Mutational Analysis
  • DNA, Neoplasm / chemistry
  • DNA, Neoplasm / genetics
  • Disease Progression
  • Exons / genetics*
  • Gene Expression
  • Humans
  • Immunohistochemistry
  • Melanoma / genetics
  • Melanoma / metabolism
  • Melanoma / pathology*
  • Mutation
  • Skin Neoplasms / genetics
  • Skin Neoplasms / metabolism
  • Skin Neoplasms / pathology*
  • Trans-Activators*
  • beta Catenin

Substances

  • CTNNB1 protein, human
  • Cytoskeletal Proteins
  • DNA, Neoplasm
  • Trans-Activators
  • beta Catenin