Evaluation of microsatellite instability and immunohistochemistry for the prediction of germ-line MSH2 and MLH1 mutations in hereditary nonpolyposis colon cancer families

Cancer Res. 2002 Jun 15;62(12):3485-92.

Abstract

Forty-eight hereditary nonpolyposis colorectal carcinoma (HNPCC) families for which a tumor sample was available were evaluated for the presence of germ-line mutations in MSH2 and MLH1, tumor microsatellite instability (MSI), and where possible, expression of MSH2 and MLH1 in tumors by immunohistochemistry. Fourteen of 48 of the families had a germ-line mutation in either MSH2 or MLH1 that could be detected by genomic DNA sequencing, and 28 of 48 of the families had MSI-H tumors. Four additional families showed loss of expression of MSH2, and one additional family showed loss of expression of MLH1 but did not have germ-line mutations in MSH2 or MLH1 that could be detected by DNA sequencing. MSI-H, as defined using the National Cancer Institute recommended five-microsatellite panel, had a 100% sensitivity for identifying samples having MSH2 or MLH1 mutations or loss of expression. In contrast, loss of MSH2 and MLH1 expression did not identify all samples having germ-line mutations in MSH2 or MLH1, because in five cases, a mutant protein product was expressed that could be detected by IHC. A combination of the Bethesda criteria for HNPCC and an MSI-H phenotype defined the smallest number of cases having all of the germ-line MSH2 and MLH1 mutations that could be detected by DNA sequencing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins
  • Colorectal Neoplasms, Hereditary Nonpolyposis / genetics*
  • Colorectal Neoplasms, Hereditary Nonpolyposis / metabolism
  • Colorectal Neoplasms, Hereditary Nonpolyposis / pathology
  • DNA-Binding Proteins*
  • Germ-Line Mutation*
  • Humans
  • Immunohistochemistry
  • Microsatellite Repeats / genetics
  • MutL Protein Homolog 1
  • MutS Homolog 2 Protein
  • Neoplasm Proteins / biosynthesis
  • Neoplasm Proteins / genetics*
  • Nuclear Proteins
  • Predictive Value of Tests
  • Proto-Oncogene Proteins / biosynthesis
  • Proto-Oncogene Proteins / genetics*

Substances

  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins
  • DNA-Binding Proteins
  • MLH1 protein, human
  • Neoplasm Proteins
  • Nuclear Proteins
  • Proto-Oncogene Proteins
  • MSH2 protein, human
  • MutL Protein Homolog 1
  • MutS Homolog 2 Protein