Inhibition of proliferation of PC-3 human prostate cancer by antagonists of growth hormone-releasing hormone: lack of correlation with the levels of serum IGF-I and expression of tumoral IGF-II and vascular endothelial growth factor

Prostate. 2002 Aug 1;52(3):173-82. doi: 10.1002/pros.10105.

Abstract

Background: Antagonists of growth hormone-releasing hormone (GHRH) such as JV-1-38 can inhibit androgen-independent prostate cancer directly by several mechanisms and/or indirectly by suppressing growth hormone/insulin-like growth factor-I (GH/IGF-I) axis. To shed more light on the mechanisms involved, the effects of JV-1-38 on PC-3 human prostate cancer were compared with those of somatostatin analog RC-160 in vivo and in vitro.

Methods: Nude mice bearing PC-3 tumors received JV-1-38 (20 microg), RC-160 (50 microg) or a combination of JV-1-38 and RC-160. The concentration of IGF-I in serum and the expression of mRNA for IGF-II and vascular endothelial growth factor (VEGF) in tumor tissue were investigated.

Results: In vivo, the final volume of PC-3 tumors treated with JV-1-38 was significantly lowered by 49% (P < 0.01), whereas RC-160 exerted only 30% inhibition (NS), compared with controls. Combined use of both compounds augmented tumor inhibition to 63% (P < 0.001). Serum IGF-I levels were decreased only in mice treated with RC-160. JV-1-38 suppressed mRNA for IGF-II in PC-3 tumors by 42%, whereas RC-160 alone or in combination with JV-1-38 caused a 65% reduction. JV-1-38 and RC-160 used as single drugs decreased the expression of VEGF by 50%, and their combination caused a 63% reduction. In vitro, JV-1-38 inhibited the proliferation of PC-3 cells by 39%. This effect could be partially reversed by addition of IGF-I to the serum-free medium. RC-160 alone did not affect the PC-3 cell growth in vitro, but in combination with JV-1-38 it augmented the antiproliferative effect of the GH-RH antagonist to 72%. Exposure to JV-1-38 in vitro reduced the expression of mRNA for IGF-II in PC-3 cells by 55% but did not change VEGF mRNA levels, whereas RC-160 had no effect.

Conclusions: The antiproliferative effect of JV-1-38 was not associated with the suppression of serum IGF-I and was only partially correlated with the expression of IGF-II and VEGF in PC-3 tumors, suggesting that other mechanisms play a role in the antitumor action of GHRH antagonists. Nevertheless, the stronger inhibition of tumor growth after combined treatment with JV-1-38 and RC-160 indicates that the interference with multiple local stimulatory factors leads to an enhanced inhibition of prostate cancer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Cell Division
  • Drug Combinations
  • Endothelial Growth Factors / genetics
  • Endothelial Growth Factors / metabolism
  • Growth Hormone-Releasing Hormone / analogs & derivatives*
  • Growth Hormone-Releasing Hormone / antagonists & inhibitors*
  • Growth Hormone-Releasing Hormone / pharmacology*
  • Humans
  • Insulin-Like Growth Factor I / genetics
  • Insulin-Like Growth Factor I / metabolism
  • Insulin-Like Growth Factor II / genetics
  • Insulin-Like Growth Factor II / metabolism
  • Lymphokines / genetics
  • Lymphokines / metabolism
  • Male
  • Mice
  • Mice, Nude
  • Prostatic Neoplasms / metabolism
  • Prostatic Neoplasms / pathology*
  • RNA, Messenger / metabolism
  • Somatostatin / analogs & derivatives
  • Somatostatin / pharmacology*
  • Tumor Cells, Cultured
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors

Substances

  • Antineoplastic Agents
  • Drug Combinations
  • Endothelial Growth Factors
  • JV 1-38
  • Lymphokines
  • RNA, Messenger
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors
  • vapreotide
  • Somatostatin
  • Insulin-Like Growth Factor I
  • Insulin-Like Growth Factor II
  • Growth Hormone-Releasing Hormone