Apolipoprotein A-II, HDL metabolism and atherosclerosis

Atherosclerosis. 2002 Sep;164(1):1-13. doi: 10.1016/s0021-9150(01)00751-1.

Abstract

Apolipoprotein (Apo) A-I and apo A-II are the major apolipoproteins of HDL. It is clearly demonstrated that there are inverse relationships between HDL-cholesterol and apo A-I plasma levels and the risk of coronary heart disease (CHD) in the general population. On the other hand, it is still not clearly demonstrated whether apo A-II plasma levels are associated with CHD risk. A recent prospective epidemiological (PRIME) study suggests that Lp A-I (HDL containing apo A-I but not apo A-II) and Lp A-I:A-II (HDL containing apo A-I and apo A-II) were both reduced in survivors of myocardial infarction, suggesting that both particles are risk markers of CHD. Apo A-II and Lp A-I:A-II plasma levels should be rather related to apo A-II production rate than to apo A-II catabolism. Mice transgenic for both human apo A-I and apo A-II are less protected against atherosclerosis development than mice transgenic for human apo A-I only, but the results of the effects of trangenesis of human apo A-II (in the absence of a co-transgenesis of human apo A-I) are controversial. It is highly suggested that HDL reduce CHD risk by promoting the transfer of peripherical free cholesterol to the liver through the so-called 'reverse cholesterol transfer'. Apo A-II modulates different steps of HDL metabolism and therefore probably alters reverse cholesterol transport. Nevertheless, some effects of apo A-II on intermediate HDL metabolism might improve reverse cholesterol transport and might reduce atherosclerosis development while some other effects might be deleterious. In different in vitro models of cell cultures, Lp A-I:A-II induce either a lower or a similar cellular cholesterol efflux (the first step of reverse cholesterol transport) than Lp A-I. Results depend on numerous factors such as cultured cell types and experimental conditions. Furthermore, the effects of apo A-II on HDL metabolism, beyond cellular cholesterol efflux, are also complex and controversial: apo A-II may inhibit lecithin-cholesterol acyltransferase (LCAT) (potential deleterious effect) and cholesteryl-ester-transfer protein (CETP) (potential beneficial effect) activities, but may increase the hepatic lipase (HL) activity (potential beneficial effect). Apo A-II may also inhibit the hepatic cholesteryl uptake from HDL (potential deleterious effect) probably through the SR-BI depending pathway. Therefore, in terms of atherogenesis, apo A-II alters the intermediate HDL metabolism in opposing ways by increasing (LCAT, SR-BI) or decreasing (HL, CETP) the atherogenicity of lipid metabolism. Effects of apo A-II on atherogenesis are controversial in humans and in transgenic animals and probably depend on the complex effects of apo A-II on these different intermediate metabolic steps which are in weak equilibrium with each other and which can be modified by both endogenous and environmental factors. It can be suggested that apo A-II is not a strong determinant of lipid metabolism, but is rather a modulator of reverse cholesterol transport.

Publication types

  • Review

MeSH terms

  • Animals
  • Apolipoprotein A-I / genetics
  • Apolipoprotein A-I / metabolism*
  • Apolipoprotein A-II / genetics
  • Apolipoprotein A-II / metabolism*
  • Arteriosclerosis / epidemiology
  • Arteriosclerosis / genetics
  • Arteriosclerosis / metabolism*
  • Cholesterol, HDL / metabolism*
  • Coronary Disease / metabolism*
  • Glucose / metabolism
  • Humans
  • Lipoprotein Lipase / metabolism
  • Mice
  • Mice, Transgenic

Substances

  • Apolipoprotein A-I
  • Apolipoprotein A-II
  • Cholesterol, HDL
  • Lipoprotein Lipase
  • Glucose