P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system

Eur J Pharmacol. 2002 Jul 5;447(2-3):247-60. doi: 10.1016/s0014-2999(02)01756-9.

Abstract

Activation of purinoceptors by extracellular ATP is an important component of the glial response to injury in the central nervous system (CNS). ATP has been shown to evoke raised cytosolic [Ca(2+)] in astrocytes, oligodendrocytes, and microglia, the three major glial cell types in the CNS. Glial cells express a heterogenous collection of metabotropic P2Y and ionotropic P2X purinoceptors, which respectively mobilise Ca(2+) from intracellular stores and trigger Ca(2+) influx across the plasmalemma. It is likely that different receptors have distinct roles in glial cell physiology and pathology. Our studies on optic nerve glia in situ indicate that P2Y(1) and P2Y(2/4) receptors are activated at low ATP concentrations, suggesting they are the predominant purinoceptors mediating physiological Ca(2+) signalling. Glia also express P2X(1) and P2X(3) purinoceptors, which mediate fast, rapidly desensitising current and may also be important in signalling. At high concentrations, such as occur in CNS injury, ATP induces large and prolonged increases in glial [Ca(2+)](i) with a primary role for P2Y purinoceptors and inositol trisphosphate (IP(3))-dependent release of Ca(2+) from intracellular stores. In addition, we found that high concentrations of ATP activated a significant P2X component that did not desensitise or saturate and was dependent on extracellular Ca(2+). These are characteristic properties of the P2X(7) subtype, and we provide in situ evidence that application of the P2X(7) receptor agonist benzoyl-benzoyl ATP (BzATP) evokes raised [Ca(2+)](i) in optic nerve glia, and that the dye YO-PRO-1, which passes through pore-forming P2X(7) receptors, is taken up by astrocytes, oligodendrocytes and microglia. Glia also express P2X(2) and P2X(4) receptors that are also pore-forming in the presence of sustained high ATP concentrations and which may also be important in the glial injury response. There is evidence that activation of P2 purinoceptors is a key step in triggering reactive changes in glial cells, including expression of immediate early genes, induction of extracellular signal regulated kinase and cyclooxygenase-2, synthesis of phospholipase A(2), release of arachidonic acid, production of prostaglandins and release of interleukins. We show that the ATP-mediated increase in glial [Ca(2+)](i) is potentiated by arachidonic acid and reduced by the inhibition of phospholipase A(2) inhibition. Together, the results implicate ATP as a primary signalling molecule in glial cells and indicate specific roles for P2Y and P2X purinoceptors in glial cell pathology.

Publication types

  • Review

MeSH terms

  • Adenosine Triphosphate / physiology
  • Animals
  • Astrocytes / metabolism
  • Astrocytes / pathology
  • Calcium Signaling*
  • Humans
  • Microglia / metabolism
  • Microglia / pathology
  • Neuroglia / metabolism*
  • Neuroglia / pathology*
  • Oligodendroglia / metabolism
  • Oligodendroglia / pathology
  • Receptors, Purinergic P2 / physiology*

Substances

  • Receptors, Purinergic P2
  • Adenosine Triphosphate