The vitamin D3 analog EB1089 induces apoptosis via a p53-independent mechanism involving p38 MAP kinase activation and suppression of ERK activity in B-cell chronic lymphocytic leukemia cells in vitro

Blood. 2003 Apr 1;101(7):2454-60. doi: 10.1182/blood-2002-07-1984. Epub 2002 Nov 21.

Abstract

EB1089, a novel vitamin D3 analog, has been shown to have cytotoxic and antiproliferative properties in a variety of malignant cells. However, its potential as a treatment for B-cell chronic lymphocytic leukemia (B-CLL) has not been evaluated. EB1089 induced apoptosis in all of the 102 B-CLL samples tested with a mean LD(50) (the concentration of EB1089 required to kill 50% of cells) value (+/- SD) of 2.1 x 10(-8) M (+/- 1.4 x 10(-8) M). Furthermore, no significant difference was found in the cytotoxicity of EB1089 in B-CLL samples from previously treated and untreated patients (P =.1637). Induction of apoptosis was associated with a reduction in Bcl-2 and Mcl-1 protein expression, but this was evident only in the apoptotic cells. In contrast, the expression of Bax, p21, and p53 was not altered in the viable or apoptotic cells from either B- or T-lymphocyte lineages. EB1089-induced apoptosis was preceded by activation of p38 mitogen-activated protein (MAP) kinase and suppression of extracellular signal-regulated kinase (ERK) activity, and this was associated with downstream activation of caspase-3. The pancaspase inhibitor (Z-VAD-FMK) and the caspase-9 inhibitor (Z-LEHD-FMK) were able to partially abrogate the apoptotic effects of EB1089 but did not affect the phosphorylation of p38 MAP kinase or the suppression of ERK. The B-CLL cells in the study were shown to highly express vitamin D receptor, but an additional receptor-independent mechanism of cell killing cannot be ruled out at this stage. These findings show that EB1089 is a potent apoptosis-inducing agent in B-CLL cells and may be useful in the treatment of B-CLL patients, particularly those with p53 mutations or drug-resistant disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / administration & dosage
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Calcitriol / administration & dosage
  • Calcitriol / analogs & derivatives*
  • Calcitriol / pharmacology*
  • Case-Control Studies
  • Cell Cycle / drug effects
  • Dose-Response Relationship, Drug
  • Enzyme Activation
  • Humans
  • Leukemia, Lymphocytic, Chronic, B-Cell / drug therapy
  • Leukemia, Lymphocytic, Chronic, B-Cell / metabolism
  • Leukemia, Lymphocytic, Chronic, B-Cell / pathology*
  • Mitogen-Activated Protein Kinases / metabolism*
  • Mitogen-Activated Protein Kinases / physiology
  • Proto-Oncogene Proteins c-bcl-2 / drug effects
  • Tumor Suppressor Protein p53 / drug effects
  • p38 Mitogen-Activated Protein Kinases

Substances

  • Antineoplastic Agents
  • Proto-Oncogene Proteins c-bcl-2
  • Tumor Suppressor Protein p53
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Calcitriol
  • seocalcitol