Synergistic activation of endothelial nitric-oxide synthase (eNOS) by HSP90 and Akt: calcium-independent eNOS activation involves formation of an HSP90-Akt-CaM-bound eNOS complex

J Biol Chem. 2003 Aug 15;278(33):30821-7. doi: 10.1074/jbc.M304471200. Epub 2003 Jun 10.

Abstract

Endothelial nitric-oxide synthase (eNOS), which generates the endogenous vasodilator, nitric oxide (NO), is highly regulated by post-translational modifications and protein interactions. We recently used purified proteins to characterize the mechanisms by which heat shock protein 90 (HSP90) increases eNOS activity at low and high Ca2+ levels (Takahashi, S. and Mendelsohn, M. E. (2003) J. Biol. Chem. 278, 9339-9344). Here we extend these studies to explore interactions between HSP90, Akt, and eNOS. In studies with purified proteins, HSP90 increased the initial rate and maximal extent of Akt-mediated eNOS phosphorylation and activation at low Ca2+ levels. Akt was not observed in the eNOS complex in the absence of HSP90, but both active and inactive Akt associated with eNOS in the presence of HSP90. Direct binding of Akt to HSP90 was observed even in the absence of eNOS. HSP90 also facilitated CaM binding to eNOS irrespective of Akt presence. Geldanamycin (GA) disrupted HSP90-eNOS binding, reduced HSP90-stimulated CaM binding, and blocked both recruitment of Akt to the eNOS complex and phosphorylation of eNOS at Ser-1179. Akt phosphorylated only CaM-bound eNOS, in an HSP90-independent manner. HSP90 and active Akt together increased eNOS activity synergistically, which was reversed by GA. In bovine aortic endothelial cells (BAECs), the effects of vascular endothelial growth factor (VEGF) and insulin on eNOS-HSP90-Akt complex formation and eNOS activation were compared. BAPTA-AM inhibited VEGF- but not insulin-induced eNOS-HSP90-Akt complex formation and eNOS phosphorylation. Insulin caused rapid, transient increase in eNOS activity correlated temporally with the formation of eNOS-HSP90-Akt complex. GA prevented insulin-induced association of HSP90, Akt and CaM with eNOS and inhibited eNOS activation in BAECs. Both platelet-derived growth factor (PDGF) and insulin induced activation of Akt in BAECs, but only insulin caused HSP90-Akt-eNOS association and eNOS phosphorylation. These results demonstrate that HSP90 and Akt synergistically activate eNOS and suggest that this synergy contributes to Ca2+-independent eNOS activation in response to insulin.

MeSH terms

  • Animals
  • Aorta / cytology
  • Calcium / metabolism
  • Cattle
  • Cells, Cultured
  • Drug Synergism
  • Endothelial Growth Factors / pharmacology
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / enzymology
  • Enzyme Activation / drug effects
  • HSP90 Heat-Shock Proteins / metabolism
  • HSP90 Heat-Shock Proteins / pharmacology*
  • Hypoglycemic Agents / pharmacology
  • In Vitro Techniques
  • Insulin / pharmacology
  • Intercellular Signaling Peptides and Proteins / pharmacology
  • Lymphokines / pharmacology
  • Nitric Oxide Synthase / metabolism*
  • Nitric Oxide Synthase Type III
  • Phosphorylation
  • Protein Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins / pharmacology*
  • Proto-Oncogene Proteins c-akt
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors

Substances

  • Endothelial Growth Factors
  • HSP90 Heat-Shock Proteins
  • Hypoglycemic Agents
  • Insulin
  • Intercellular Signaling Peptides and Proteins
  • Lymphokines
  • Proto-Oncogene Proteins
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type III
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Calcium