TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells

Cell Calcium. 2004 Jul;36(1):19-28. doi: 10.1016/j.ceca.2003.11.006.

Abstract

Using patch clamp and Ca(2+) imaging techniques, we have studied Ca(2+) entry pathways in human hepatoblastoma (HepG2) cells. These cells express the mRNA of TRPV1, TRPV2, TRPV3 and TRPV4 channels, but not those of TRPV5 and TRPV6. Functional assessment showed that capsaicin (10 microM), 4alpha-phorbol-12,13-didecanoate (4alphaPDD, 1 microM), arachidonic acid (10 microM), hypotonic stress, and heat all stimulated increases in [Ca(2+)](i) within minutes. The increase in [Ca(2+)](i) depended on extracellular Ca(2+) and on the transmembrane potential, which indicated that both driving forces affected Ca(2+) entry. Capsaicin also stimulated an increase in [Ca(2+)](i) in nominally Ca(2+)-free solutions, which was compatible with the receptor functioning as a Ca(2+) release channel. Hepatocyte growth factor/scatter factor (HGF/SF) modulated Ca(2+) entry. Ca(2+) influx was greater in HepG2 cells incubated with HGF/SF (20 ng/ml for 20 h) compared with non-stimulated cells, but this occurred only in those cells with a migrating phenotype as determined by presence of a lamellipodium and trailing footplate. The effect of capsaicin on [Ca(2+)](i) was greater in migrating HGF/SF-treated cells, and this was inhibited by capsazepine. The difference between control and HGF/SF-treated cells was not found in Ca(2+)-free solutions. 4alphaPDD also had no greater effect on HGF/SF-treated cells. We conclude that TRPV1 and TRPV4 channels provide Ca(2+) entry pathways in HepG2 cells. HGF/SF increases Ca(2+) entry via TRPV1, but not via TRPV4. This rise in [Ca(2+)](i) may constitute an early response of a signalling cascade that gives rise to cell locomotion and the migratory phenotype.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arachidonic Acid / pharmacology
  • Calcium / metabolism
  • Calcium / physiology
  • Capsaicin / pharmacology
  • Cation Transport Proteins / genetics
  • Cation Transport Proteins / physiology*
  • Cell Line, Tumor
  • Cell Movement / drug effects*
  • Cell Movement / physiology
  • Gene Expression
  • Hepatoblastoma
  • Hepatocyte Growth Factor / pharmacology*
  • Hepatocytes / drug effects
  • Hepatocytes / metabolism*
  • Hot Temperature
  • Humans
  • Hypotonic Solutions / pharmacology
  • Ion Channels / classification*
  • Ion Channels / drug effects
  • Ion Channels / physiology*
  • Models, Biological
  • Patch-Clamp Techniques
  • Phorbol Esters / pharmacology
  • RNA, Messenger / metabolism
  • Time Factors

Substances

  • Cation Transport Proteins
  • Hypotonic Solutions
  • Ion Channels
  • Phorbol Esters
  • RNA, Messenger
  • Arachidonic Acid
  • 4-O-methyl-phorbol-12,13-didecanoate
  • Hepatocyte Growth Factor
  • Capsaicin
  • Calcium