Insight into B cell development and differentiation

Acta Paediatr Suppl. 2004 May;93(445):48-51. doi: 10.1111/j.1651-2227.2004.tb03056.x.

Abstract

The main topic of this article is B cell development and differentiation, with a special focus on the mechanisms and molecules that regulate the expression of humoral immunity. Molecular epidemiological analysis was performed on the genes responsible for the X-linked agammaglobulinemia (XLA) phenotype of the majority of Italian patients and their distinct mutations were characterized. Mutations in Bruton's tyrosine kinase (BTK), a member of Tec Family of protein tyrosine kinases, have been found to be mainly responsible for XLA disease. The exact function of BTK in signal transduction is not yet known; thus, the specific role of BTK in receptor-dependent calcium signaling and the pro-antiapoptotic regulatory activity was addressed by transfecting RAMOS-1, a BTK-deficient human Burkitt's/B cell leukemia line with wild-type and mutant constructs. This work may provide clues about critical sites in the molecule and give support for gene therapy as a potential successful approach to XLA. Another aspect of this research is the identification and dissection of the molecular events that are likely to be directly related to the ability to express various isotypes of immunoglobulin with differing function and certain B cell immunodeficiency, mainly common variable disease and non-X-linked hyperIgM. B cell development and maturation steps in different compartments of the immune system are tracked by the analysis of cell-surface molecules and components of the signal transduction pathways, i.e. CD40, CD30, CD27, CD38, CD22 and CD24. A few components involved in B cell development, maturation and differentiation and their specific functional role are at least partially known, but these are far from fitting into an understandable pathway at present.

MeSH terms

  • Agammaglobulinaemia Tyrosine Kinase
  • Agammaglobulinemia / epidemiology
  • Agammaglobulinemia / genetics
  • Agammaglobulinemia / immunology*
  • Antibody Formation / physiology*
  • B-Lymphocytes / cytology
  • B-Lymphocytes / immunology*
  • Cell Differentiation / immunology*
  • Humans
  • Hypergammaglobulinemia / epidemiology
  • Hypergammaglobulinemia / genetics
  • Hypergammaglobulinemia / immunology
  • Immunoglobulin M
  • Italy / epidemiology
  • Models, Immunological
  • Mutation
  • Protein-Tyrosine Kinases / genetics
  • Protein-Tyrosine Kinases / immunology*
  • Signal Transduction / genetics
  • Signal Transduction / immunology
  • Syndrome

Substances

  • Immunoglobulin M
  • Protein-Tyrosine Kinases
  • Agammaglobulinaemia Tyrosine Kinase
  • BTK protein, human