Human KIT ligand promoter is positively regulated by HMGA1 in breast and ovarian cancer cells

Oncogene. 2004 Nov 4;23(52):8557-62. doi: 10.1038/sj.onc.1207926.

Abstract

KIT ligand (KL) and its receptor, c-kit, are coexpressed in many types of cancer cells and have been implicated in tumor growth and angiogenesis. While Sertoli cell-specific regulation of the KL promoter has been well characterized, regulation in cancer cells remains to be elucidated. We recently reported microarray results demonstrating that increased high-mobility group (HMG) A1a protein expression correlates with increased KL transcription in MCF-7 human breast cancer cells. Sequence analysis indicates a potential for multiple HMGA1 binding sites within the human KL promoter. In order to better define the underlying molecular mechanisms that HMGA1 uses to facilitate malignant transformation of cancer cells, we have used a variety of methods to determine whether HMGA1a directly regulates the human KL promoter in breast and ovarian cancer cells. Our results indicate that: (i) KL promoter activity is significantly higher in MCF-7 cells overexpressing HMGA1a; (ii) HMGA1a protein binds to AT-rich regions of the KL promoter DNA both in vitro and in vivo; (iii) mutation of the AT-rich regions inhibits HMGA1a binding in vitro; and (iv) HMGA1a-specific inhibition significantly decreases transcription of KL in OCC1 human ovarian cancer cells. In addition, MCF-7 cells with transgenic HMGA1 overexpression stained positive for the KL protein by immunocytochemistry and immunohistochemistry, and were growth-inhibited by KL neutralization. The cumulative evidence indicates that HMGA1 positively regulates the human KL promoter in breast and ovarian cancer cells and implicates serum KL as a diagnostic marker for HMGA1-positive carcinomas.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Breast Neoplasms / genetics*
  • Breast Neoplasms / metabolism
  • Female
  • HMGA1a Protein / metabolism*
  • Humans
  • Mice
  • Molecular Sequence Data
  • Ovarian Neoplasms / genetics*
  • Ovarian Neoplasms / metabolism
  • Promoter Regions, Genetic*
  • Stem Cell Factor / genetics*
  • Stem Cell Factor / metabolism

Substances

  • Stem Cell Factor
  • HMGA1a Protein