Expression and localization of connective tissue growth factor (CTGF/Hcs24/CCN2) in osteoarthritic cartilage

Osteoarthritis Cartilage. 2004 Oct;12(10):771-8. doi: 10.1016/j.joca.2004.06.009.

Abstract

Objective: The investigation of the expression and localization of connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24/CCN family member 2 (CTGF/Hcs24/CCN2) in normal and osteoarthritic (OA) cartilage, and quantification of CTGF/Hcs24-positive cells.

Methods: Cartilage samples of patients (n=20) with late stage OA were obtained at total joint replacement surgery. Morphologically normal cartilage was harvested for comparison purposes from the femoral heads of 6 other patients with femoral neck fracture. Paraffin-embedded sections were stained by Safranin O. The severity of the OA lesions was divided into four stages (normal, early, moderate, and severe). The localization of protein and mRNA for CTGF/Hcs24 was investigated by immunohistochemistry and in situ hybridization, respectively. The population of CTGF/Hcs24-positive chondrocytes in OA cartilage and chondro-osteophyte was quantified by counting the number of the cells under light microscopy.

Results: Signals for CTGF/Hcs24 were detected in a small percentage of chondrocytes throughout the layers of normal cartilage. In early stage OA cartilage, the CTGF/Hcs24-positive chondrocytes were localized mainly in the superficial layer. In moderate to severe OA cartilage, intense staining for CTGF/Hcs24 was observed in proliferating chondrocytes forming cell clusters next to the cartilage surface. In chondro-osteophyte, strong signals were found in the chondrocytes of the proliferative and hypertrophic zones.

Conclusion: CTGF/Hcs24 expression was detected in both normal and OA chondrocytes of human samples. The results of the current study suggested that expression of CTGF/Hcs24 was concomitant with development of OA lesions and chondrocyte differentiation in chondro-osteophyte.

MeSH terms

  • Adult
  • Aged
  • Cartilage, Articular / metabolism*
  • Cell Differentiation
  • Chondrocytes / metabolism
  • Chondrocytes / pathology
  • Connective Tissue Growth Factor
  • Female
  • Gene Expression
  • Humans
  • Immediate-Early Proteins / genetics
  • Immediate-Early Proteins / metabolism*
  • In Situ Hybridization
  • Intercellular Signaling Peptides and Proteins / genetics
  • Intercellular Signaling Peptides and Proteins / metabolism*
  • Male
  • Middle Aged
  • Osteoarthritis, Hip / metabolism*
  • Osteoarthritis, Hip / pathology
  • Osteoarthritis, Knee / metabolism*
  • Osteoarthritis, Knee / pathology
  • RNA, Messenger / genetics
  • Severity of Illness Index

Substances

  • CCN2 protein, human
  • Immediate-Early Proteins
  • Intercellular Signaling Peptides and Proteins
  • RNA, Messenger
  • Connective Tissue Growth Factor