Targeting c-Mpl for revival of human immunodeficiency virus type 1-induced hematopoietic inhibition when CD34+ progenitor cells are re-engrafted into a fresh stromal microenvironment in vivo

J Virol. 2004 Oct;78(20):11385-92. doi: 10.1128/JVI.78.20.11385-11392.2004.

Abstract

The inhibition of multilineage hematopoiesis which occurs in the severe combined immunodeficiency mouse with transplanted human fetal thymus and liver tissues (SCID-hu Thy/Liv) due to human immunodeficiency virus type 1 (HIV-1) infection is also accompanied by a severe loss of c-Mpl expression on these progenitor cells. Inhibition of colony-forming activity (CFA) of the CD34(+) progenitor cells is partially revived to about 40% of mock-infected Thy/Liv implants, following reconstitution of the CD34(+) cells that were exposed to HIV-1 infection, in a new Thy/Liv stromal microenvironment of irradiated secondary SCID-hu recipients at 3 weeks post-re-engraftment. In addition, in these reconstituted animals, the proportion of c-Mpl(+) CD34(+) cells relative to c-Mpl(-) CD34(+) cells increased by about 25%, to 35% of mock-infected implants, suggesting a reacquirement of c-Mpl phenotype by the c-Mpl(-) CD34(+) cells. These results suggest a correlation between c-Mpl expression and multilineage CFA of the human CD34(+) progenitor cells that have experienced the effects of HIV-1 infection. Treatment of the secondary-recipient animals with the c-Mpl ligand, thrombopoietin (Tpo), further increased c-Mpl expression and CFA of re-engrafted CD34(+) cells previously exposed to virus in the primary implants to about 50 to 70% over that of those re-engrafted CD34(+) cells derived from implants of untreated animals. Blocking of c-Mpl with anti-c-Mpl monoclonal antibody in vivo by injecting the SCID-hu animals resulted in the reduction or loss of CFA. Thus, inhibition, absence, or loss of c-Mpl expression as in the c-Mpl(-) CD34(+) subset of cells is the likely cause of CFA inhibition. Further, CFA of the CD34(+) cells segregates with their c-Mpl expression. Therefore, c-Mpl may play a role in hematopoietic inhibition during HIV-1 infection, and control of its expression levels may aid in hematopoietic recovery and thereby reduce the incidence of cytopenias occurring in infected individuals.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigens, CD34 / metabolism*
  • Cell Differentiation
  • Cell Lineage
  • Colony-Forming Units Assay
  • HIV Infections / pathology
  • HIV-1 / pathogenicity*
  • HIV-1 / physiology
  • Hematopoiesis / physiology*
  • Humans
  • Liver Transplantation
  • Mice
  • Mice, SCID
  • Neoplasm Proteins / metabolism*
  • Proto-Oncogene Proteins / metabolism*
  • Receptors, Cytokine / metabolism*
  • Receptors, Thrombopoietin
  • Stem Cell Transplantation*
  • Stem Cells / cytology
  • Stem Cells / physiology*
  • Thymus Gland / transplantation

Substances

  • Antigens, CD34
  • Neoplasm Proteins
  • Proto-Oncogene Proteins
  • Receptors, Cytokine
  • Receptors, Thrombopoietin
  • MPL protein, human