No evidence for mutations or altered expression of the Suppressor of Fused gene (SUFU) in primitive neuroectodermal tumours

Neuropathol Appl Neurobiol. 2004 Oct;30(5):532-9. doi: 10.1111/j.1365-2990.2004.00560.x.

Abstract

The sonic hedgehog (Shh) and the Wnt signalling pathways are involved in the development of medulloblastomas (MBs), the most frequent malignant brain tumours in children. Components of these two developmental and cancer-associated pathways, including (Patched) PTCH, SMOH, adenomatous polyposis coli (APC), beta-catenin and AXIN1 show somatic mutations in sporadic MBs. In this study we analysed SUFU (human Suppressor of Fused), which acts as a negative regulator of both the Shh and Wnt signalling pathways and therefore represents a putative tumour suppressor gene, to find out if it is also involved in the pathogenesis of sporadic MBs. We screened 145 primitive neuroectodermal tumours (PNETs) including 90 classic MBs, 42 of the desmoplastic variant and two medullomyoblastomas as well as 11 MB cell lines for mutations using single-strand conformational polymorphism (SSCP) and sequencing analysis. 18% of the MBs exhibited allelic losses on chromosome 10q. In contrast to a previous report, in which truncating mutations of SUFU have been identified in 9% of MBs, we were not able to identify somatic mutations of SUFU in our large tumour panel. We uncovered single nucleotide polymorphisms (SNPs) in exon 4, 8, 11 and in intron 2 in the SUFU gene. Expression analysis by competitive reverse transcription-polymerase chain reaction (RT-PCR) revealed no difference in SUFU mRNA levels of both MB subtypes and normal foetal or adult cerebellar tissues. Our results indicate that genetic alterations of the SUFU gene, do not contribute significantly to the molecular pathogenesis of MBs.

MeSH terms

  • Adolescent
  • Adult
  • Base Sequence
  • Brain Neoplasms / genetics*
  • Cell Line, Tumor
  • Child
  • Child, Preschool
  • DNA Mutational Analysis
  • DNA Primers
  • DNA, Neoplasm / genetics*
  • Humans
  • Infant
  • Infant, Newborn
  • Middle Aged
  • Mutation
  • Neuroectodermal Tumors, Primitive / genetics*
  • Polymorphism, Single-Stranded Conformational
  • RNA, Messenger / analysis
  • Repressor Proteins / genetics*
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • DNA Primers
  • DNA, Neoplasm
  • RNA, Messenger
  • Repressor Proteins
  • SUFU protein, human