Functionality of allelic variations in human alcohol dehydrogenase gene family: assessment of a functional window for protection against alcoholism

Pharmacogenetics. 2004 Nov;14(11):725-32. doi: 10.1097/00008571-200411000-00003.

Abstract

Alcohol dehydrogenase (ADH) catalyses the rate-determining reaction in ethanol metabolism. Genetic association studies of diverse ethnic groups have firmly demonstrated that the allelic variant ADH1B*2 significantly protects against alcoholism but that ADH1C*1, which is in linkage with ADH1B*2, produces a negligible protection. The influence of other potential candidate genes/alleles within the human ADH family, ADH1B*3 and ADH2, remains unclear or controversial. To address this question, functionalities of ADH1B3 and ADH2 were assessed at a physiological level of coenzyme and substrate range. Ethanol-oxidizing activities of recombinant ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2 and ADH2 were determined at pH 7.5 in the presence of 0.5 mm NAD with 2-50 mm ethanol. The activity differences between ADH1B2 and ADH1B1 were taken as a threshold for effective protection against alcoholism and those between ADH1C1 and ADH1C2 as a threshold for null protection. Over 2-50 mm ethanol, the activities of ADH1B3 were found 2.9-23-fold lower than those of ADH1B2, largely attributed to the Km effect (ADH1B2, 1.8 mm; ADH1B3, 61 mm). Strikingly, the ADH1B3 activity was only 84% that of ADH1B1 at a low ethanol concentration, 2 mm, but increased 10-fold at 50 mm. Corrected for relative expression levels of the enzyme in liver, the hepatic ADH2 activities were estimated to be 18-97% those of ADH1B1 over 2-50 mm ethanol and were 28-140% of the activity differences between ADH1C1 and ADH1C2. The assessment based on the proposed functional window for the human ADH gene family indicates that ADH1B*3 may show some degree of protection against alcoholism and that the ADH2 functional variants appear to be negligible for this protection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcohol Dehydrogenase / genetics*
  • Alcoholism / genetics*
  • Alleles*
  • Base Sequence
  • DNA Primers
  • Genetic Variation*
  • Humans
  • Mutagenesis, Site-Directed
  • Recombinant Proteins / genetics

Substances

  • DNA Primers
  • Recombinant Proteins
  • Alcohol Dehydrogenase