Role of ICAM1 in invasion of human breast cancer cells

Carcinogenesis. 2005 May;26(5):943-50. doi: 10.1093/carcin/bgi070. Epub 2005 Mar 17.

Abstract

We identified previously a region on chromosome 19p13.2 spanning the genes encoding the intercellular adhesion molecules (ICAM), ICAM1, ICAM4 and ICAM5 as a breast cancer susceptibility locus. Genetic variants in this region were also associated with indicators of disease severity, including higher rates of metastases to other organs. Based on this association, we set out to explore the role of ICAM1 in proliferation and invasion of human breast cancer cells. We observed that ICAM1 downregulation at the mRNA and protein levels led to a strong suppression of human breast cell invasion through a matrigel matrix. Under the same conditions, no significant effect on cell proliferation in vitro was seen. Incubation of cells with an antibody against ICAM1 blocked invasion of the highly metastatic MDA-MB-435 cell line in a dose-dependent manner without affecting cell migration. We also demonstrated that the level of ICAM1 protein expression on the cell surface positively correlated with metastatic potential of five human breast cancer cell lines and that ICAM1 mRNA levels were elevated in breast tumor compared with adjacent normal tissue. These results corroborate our previous genetic finding that variations in the ICAM region are associated with the occurrence of metastases and establish a causal role of ICAM1 in invasion of metastatic human breast carcinoma cell lines.

MeSH terms

  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Cell Proliferation
  • Female
  • Humans
  • Intercellular Adhesion Molecule-1 / genetics
  • Intercellular Adhesion Molecule-1 / metabolism*
  • Neoplasm Invasiveness*
  • Neoplasm Metastasis
  • RNA Interference
  • RNA, Messenger / metabolism
  • RNA, Small Interfering / metabolism
  • Tumor Cells, Cultured

Substances

  • RNA, Messenger
  • RNA, Small Interfering
  • Intercellular Adhesion Molecule-1