Autosomal recessive and dominant polycystic kidney diseases

Minerva Urol Nefrol. 2004 Dec;56(4):329-38.

Abstract

It is possible to identify renal cysts in several subjects by ultrasonography imaging techniques. Among the inherited polycystic kidney diseases we include autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic diseases such as von Hippel-Lindau disease, tuberous sclerosis complex (TSC1 and TSC2), and autosomal dominant polycystic kidney disease (ADPKD). ARPKD is a rare disease, related to PKHD1 gene, located on chromosome 6p21, that encodes a protein named polyductin/fibrocystin. Pathoanatomical features are bilateral kidney involvement with multiple microcysts, and invariably liver involvement with portal and interlobular fibrosis. A single genetic defect leads to different degrees of renal and hepatic involvement with very different phenotypes and different clinical outcome, in the same family too. ARPKD clinically may show 4 different forms: perinatal, neonatal, infantile, and juvenile. ADPKD is much more frequent (1: 400-1000 live births), and can arise from mutations in 2 different genes, named PKD1 located on chromosome 16p13.3, and PKD2 located on chromosome 4q21-23. The proteins encoded by the PKD1 and PKD2 genes are named polycystins which play crucial roles in several biologic processes. To explain the focal lesions that affected different organs and tissues the "double hit" theory has been proposed (germinal mutation plus somatic mutation on PKD1 or PKD2). Recently, biologic evidence documented the crucial role of the renal primary cilia on the formation of polycystins to induce cystogenesis. ADPKD may be clinically characterized by abdominal pain, hypertension, episodes of gross hematuria, headache, renal stones, aortic and cerebral aneurysms, mitral valve prolapse, and polycystic liver disease. ADPKD is slowly progressive disease responsible for up 10% of end stage renal failure (ESRF) in every country of the world. Male sex, PKD1 gene, episodes of gross hematuria, and the precocity and severity of hypertension play an important role in the progression of renal disease to ESRF.

Publication types

  • Review

MeSH terms

  • Humans
  • Polycystic Kidney, Autosomal Dominant* / diagnosis
  • Polycystic Kidney, Autosomal Dominant* / genetics
  • Polycystic Kidney, Autosomal Recessive* / diagnosis
  • Polycystic Kidney, Autosomal Recessive* / genetics