Identification of three mutations in the Cu,Zn-superoxide dismutase (Cu,Zn-SOD) gene with familial amyotrophic lateral sclerosis: transduction of human Cu,Zn-SOD into PC12 cells by HIV-1 TAT protein basic domain

Ann N Y Acad Sci. 2005 May:1042:303-13. doi: 10.1196/annals.1338.053.

Abstract

The most frequent genetic causes of amyotrophic lateral sclerosis (ALS) determined so far are mutations occurring in the gene coding for copper/zinc superoxide dismutase (Cu,Zn-SOD). The mechanism may involve the formation of hydroxyl radicals or malfunctioning of the SOD protein. Wild-type SOD1 was constructed into a transcription-translation expression vector to examine the SOD1 production in vitro. Wild-type SOD1 was highly expressed in Escherichia coli. Active SOD1 was expressed in a metal-dependent manner. To investigate the possible roles of genetic causes of ALS, a human Cu,Zn-SOD gene was fused with a gene fragment encoding the nine amino acid transactivator of transcription (Tat) protein transduction domain (RKKRRQRRR) of human immunodeficiency virus type 1 in a bacterial expression vector to produce a genetic in-frame Tat-SOD1 fusion protein. The expressed and purified Tat-SOD1 fusion proteins in E. coli can enter PC12 neural cells to observe the cellular consequences. Denatured Tat-SOD1 was successfully transduced into PC12 cells and retained its activity via protein refolding. Three point mutations, E21K, D90V, and D101G, were cloned by site-directed mutagenesis and showed lower SOD1 activity. In undifferentiated PC12 cells, wild-type Tat-SOD1 could prevent DNA fragmentation due to superoxide anion attacks generated by 35 mM paraquat, whereas mutant Tat-D101G enhanced cell death. Our results demonstrate that exogenous human Cu,Zn-SOD fused with Tat protein can be directly transduced into cells, and the delivered enzymatically active Tat-SOD exhibits a cellular protective function against oxidative stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyotrophic Lateral Sclerosis / enzymology*
  • Amyotrophic Lateral Sclerosis / genetics*
  • Animals
  • Cell Differentiation
  • Cell Survival
  • Dimerization
  • Disease Susceptibility
  • Gene Products, tat / genetics
  • Gene Products, tat / metabolism*
  • Humans
  • Mutation / genetics*
  • PC12 Cells
  • Rats
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Superoxide Dismutase / genetics*
  • Superoxide Dismutase / metabolism*
  • Superoxides / metabolism
  • Transduction, Genetic / methods*

Substances

  • Gene Products, tat
  • Recombinant Fusion Proteins
  • Superoxides
  • Superoxide Dismutase