AAV serotype-dependent apolipoprotein A-I Milano gene expression

Atherosclerosis. 2005 Aug;181(2):261-9. doi: 10.1016/j.atherosclerosis.2004.12.050.

Abstract

Recent evidence from a double-blind, randomized study showed that treatment with apolipoprotein A-I Milano (ApoA-I Milano) in a complex with phospholipids produced significant regression of the coronary atheroma burden in patients with acute coronary syndromes. We previously showed similar regression of atherosclerosis in an animal model. Here, we examined a viral vector-based gene delivery system as a basis for ApoA-I Milano gene therapy. Comparing levels of expression using combinations of the cytomegalovirus (CMV) promoter in a recombinant serotype 2 adeno-associated virus (rAAV2) linked to ApoA-I Milano or the enhanced green fluorescent protein (EGFP) genes, we found that a promoter construct of two CMV core promoters sharing a CMV enhancer was more active than other combinations or a single CMV promoter. In vivo assessment of this optimal CMV construct using rAAV2 virus particles for intravenous (IV) or intramuscular (IM) routes of delivery produced high circulating levels of ApoA-I Milano protein for extended periods (up to 220 ng/ml at 22 weeks p.i.) by IV delivery while the IM route resulted in a relatively short period of very low-level ApoA-I Milano expression. Since there was no difference in the immune response between the two routes of delivery, we reasoned that tissue tropism might be responsible for this differential gene expression. To explore this possibility, we investigated the effect of different AAV serotypes on ApoA-I Milano gene expression in vivo. It found that rAAV1-mediated expression of ApoA-I Milano was approximately 15- and 9-fold higher than rAAV2 and rAAV5, respectively when IM injection routes were compared while all three AAV serotypes produced substantial levels of ApoA-I Milano expression from IV injection. These studies demonstrate that by modifying the promoter and serotype, increases in the efficiency of AAV-directed transgene expression could be achieved and support the potential of AAV-mediated gene therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenoviridae / genetics
  • Animals
  • Apolipoprotein A-I / genetics*
  • Cell Line
  • Coronary Artery Disease / genetics*
  • Coronary Artery Disease / therapy*
  • Cytomegalovirus / genetics
  • Disease Models, Animal
  • Gene Expression
  • Genetic Therapy / methods*
  • Green Fluorescent Proteins / genetics
  • Humans
  • Kidney / cytology
  • Mice
  • Mice, Mutant Strains
  • Promoter Regions, Genetic
  • Transgenes / genetics

Substances

  • Apolipoprotein A-I
  • Green Fluorescent Proteins