The E22K mutation of myosin RLC that causes familial hypertrophic cardiomyopathy increases calcium sensitivity of force and ATPase in transgenic mice

J Cell Sci. 2005 Aug 15;118(Pt 16):3675-83. doi: 10.1242/jcs.02492. Epub 2005 Aug 2.

Abstract

Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease caused by mutations in all of the major sarcomeric proteins, including the ventricular myosin regulatory light-chain (RLC). The E22K-RLC mutation has been associated with a rare variant of cardiac hypertrophy defined by mid-left ventricular obstruction due to papillary muscle hypertrophy. This mutation was later found to cause ventricular and septal hypertrophy. We have generated transgenic (Tg) mouse lines of myc-WT (wild type) and myc-E22K mutant of human ventricular RLC and have examined the functional consequences of this FHC mutation in skinned cardiac-muscle preparations. In longitudinal sections of whole mouse hearts stained with hematoxylin and eosin, the E22K-mutant hearts of 13-month-old animals showed signs of inter-ventricular septal hypertrophy and enlarged papillary muscles with no filament disarray. Echo examination did not reveal evidence of cardiac hypertrophy in Tg-E22K mice compared to Tg-WT or Non-Tg hearts. Physiological studies utilizing skinned cardiac-muscle preparations showed an increase by DeltapCa50>or=0.1 in Ca(2+) sensitivity of myofibrillar ATPase activity and force development in Tg-E22K mice compared with Tg-WT or Non-Tg littermates. Our results suggest that E22K-linked FHC is mediated through Ca(2+)-dependent events. The FHC-mediated structural perturbations in RLC that affect Ca(2+) binding properties of the mutated myocardium are responsible for triggering the abnormal function of the heart that in turn might initiate a hypertrophic process and lead to heart failure.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphatases / metabolism*
  • Animals
  • Calcium / metabolism
  • Calcium Signaling / genetics*
  • Calcium-Binding Proteins / metabolism
  • Cardiomyopathy, Hypertrophic, Familial / genetics*
  • Cardiomyopathy, Hypertrophic, Familial / metabolism
  • Cardiomyopathy, Hypertrophic, Familial / physiopathology
  • Disease Models, Animal
  • Echocardiography
  • Humans
  • Hypertrophy, Left Ventricular / genetics
  • Hypertrophy, Left Ventricular / metabolism
  • Hypertrophy, Left Ventricular / physiopathology
  • Mice
  • Mice, Transgenic
  • Muscle Contraction / genetics*
  • Mutation / genetics
  • Myocardium / metabolism*
  • Myocytes, Cardiac / metabolism
  • Myosin Light Chains / genetics*

Substances

  • Calcium-Binding Proteins
  • Myosin Light Chains
  • Adenosine Triphosphatases
  • Calcium