DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression

Cancer Biol Ther. 2005 Oct;4(10):1138-43. doi: 10.4161/cbt.4.10.2073. Epub 2005 Oct 1.

Abstract

Genome stability maintenance is regulated by both genetic and epigenetic mechanisms. DNA methylation is the predominant epigenetic mechanism in regulation of gene expression and in suppression of mobile DNA elements from random integration in the genome. The importance of DNA methylation in tumorigenesis has been demonstrated in cancer cells, which harbor global genomic DNA hypomethylation and regional hypermethylation at CpG islands of tumor suppressor genes. DNA methylation is mediated by a class of DNA methyltransferases (Dnmts) involved in de novo methylation of genomic DNA and in the maintenance of DNA methylation patterns during replication. Global genomic DNA demethylation induced by 5-Aza-deoxycytidine activates the p53 signaling pathway and induces apoptosis, suggesting that DNA methylation mediated by Dnmts is associated with p53 signaling in maintaining genome stability. In this report, we show that Dnmt3a interacts with p53 directly and represses p53-mediated transactivation of the p21 gene. It was found that trans-repression by Dnmt3a does not require the methyltransferase activity implying that transcriptional repression does not involve promoter silencing through DNA methylation by Dnmt3a. Finally, the activity of Dnmt3a in vivo was demonstrated when this enzyme was overexpressed in a breast cell line in which Dnmt3a repressed p21 upregulation following DNA damage. The results presented in this study provide new understanding of tumor promotion as mediated by Dnmt3a through its interaction with p53, and suppression of the p53-mediated transcription of tumor suppressor genes. Given that the expression of Dnmts is increased in certain cancers, it is likely that increased Dnmts could block the transactivation function of p53 following its induction by chemotherapeutic drugs resulting in chemoresistance. The use of a DNA methyltransferase inhibitor would therefore restore the p53 tumor suppression function and the utilization of such an inhibitor in combination with DNA damage agents might be an effective therapy for certain cancers.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Breast / cytology
  • Breast Neoplasms / enzymology*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Line
  • Cell Line, Tumor
  • DNA (Cytosine-5-)-Methyltransferases / genetics
  • DNA (Cytosine-5-)-Methyltransferases / metabolism*
  • DNA Methyltransferase 3A
  • Embryo, Mammalian / cytology
  • Female
  • Fibroblasts / enzymology
  • Gene Expression Regulation, Neoplastic*
  • Genes, p53*
  • Glutathione Transferase / metabolism
  • Humans
  • Mice
  • Models, Biological
  • Protein Structure, Tertiary
  • Recombinant Fusion Proteins / metabolism
  • Tumor Suppressor Protein p53 / chemistry
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*

Substances

  • DNMT3A protein, human
  • Dnmt3a protein, mouse
  • Recombinant Fusion Proteins
  • Tumor Suppressor Protein p53
  • DNA (Cytosine-5-)-Methyltransferases
  • DNA Methyltransferase 3A
  • Glutathione Transferase