Molecular and cellular biology of Alzheimer amyloid

J Mol Neurosci. 1992;3(3):111-25. doi: 10.1007/BF02919403.

Abstract

Alzheimer's Disease (AD), a disorder of unknown etiology, is the most common form of adult-onset dementia and is characterized by severe intellectual deterioration. The definitive diagnosis of AD is made by postmortem examination of the brain, which reveals large quantities of neurofibrillary tangles (NFT) and senile plaques within the parenchyma. The NFT are composed of paired helical filaments associated with several cytoskeletal proteins. The primary protein component of senile plaques is beta/A4 amyloid, a 42-43 amino acid peptide derived from a much larger molecule, the amyloid precursor protein (APP). Vascular beta/A4 amyloidosis is also prevalent in the disease. The mechanism by which beta/A4 amyloid accumulates in the AD brain is unknown. Recent research has demonstrated that the precursor molecule, APP, is a transmembrane protein with a large extracytoplasmic domain, a membrane spanning region that includes the portion that gives rise to beta/A4 amyloid, and a short intracytoplasmic domain. The precursor has multiple forms among which are those that differ by a variable length insert within the extracytoplasmic domain. The insert has sequence homology to the family of Kunitz protease inhibitor proteins. Cellular and animal models have been developed to study the nature of APP processing and the biological and behavioral consequences of beta/A4 amyloidosis. The results of such studies indicate that the normal processing of APP involves enzymatic cleavage of the molecule within the beta/A4 amyloid region, thus preventing the accumulation of beta/A4 in the normal brain. The factors leading to abnormal processing of APP, and consequent beta/A4 amyloid accumulation within the AD brain, have yet to be identified. In cell culture, the biological effects associated with beta/A4 amyloid include neurotrophic and neurotoxic activities, while the peptide has also been shown to have dramatic behavioral effects in animal models.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Alzheimer Disease / genetics
  • Alzheimer Disease / metabolism*
  • Amyloid / genetics
  • Amyloid / metabolism*
  • Amyloid beta-Peptides / genetics
  • Amyloid beta-Peptides / metabolism
  • Amyloid beta-Protein Precursor / genetics
  • Amyloid beta-Protein Precursor / metabolism
  • Animals
  • Brain / metabolism
  • Brain / pathology
  • Cerebral Arteries / metabolism
  • Cerebral Arteries / pathology
  • Cytoskeletal Proteins / metabolism
  • Disease Models, Animal
  • Gene Expression
  • Humans
  • Mice
  • Neurofibrillary Tangles / metabolism
  • Protein Processing, Post-Translational
  • RNA, Messenger / biosynthesis

Substances

  • Amyloid
  • Amyloid beta-Peptides
  • Amyloid beta-Protein Precursor
  • Cytoskeletal Proteins
  • RNA, Messenger