Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis

Science. 2005 Dec 16;310(5755):1821-4. doi: 10.1126/science.1120615.

Abstract

Translesion synthesis (TLS) is the major pathway by which mammalian cells replicate across DNA lesions. Upon DNA damage, ubiquitination of proliferating cell nuclear antigen (PCNA) induces bypass of the lesion by directing the replication machinery into the TLS pathway. Yet, how this modification is recognized and interpreted in the cell remains unclear. Here we describe the identification of two ubiquitin (Ub)-binding domains (UBM and UBZ), which are evolutionarily conserved in all Y-family TLS polymerases (pols). These domains are required for binding of poleta and poliota to ubiquitin, their accumulation in replication factories, and their interaction with monoubiquitinated PCNA. Moreover, the UBZ domain of poleta is essential to efficiently restore a normal response to ultraviolet irradiation in xeroderma pigmentosum variant (XP-V) fibroblasts. Our results indicate that Ub-binding domains of Y-family polymerases play crucial regulatory roles in TLS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Animals
  • Cell Line
  • Computational Biology
  • DNA / biosynthesis*
  • DNA Damage*
  • DNA Polymerase iota
  • DNA Repair
  • DNA Replication
  • DNA-Directed DNA Polymerase / chemistry*
  • DNA-Directed DNA Polymerase / genetics
  • DNA-Directed DNA Polymerase / metabolism*
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Models, Molecular
  • Molecular Sequence Data
  • Mutation
  • Nuclear Magnetic Resonance, Biomolecular
  • Point Mutation
  • Proliferating Cell Nuclear Antigen / metabolism
  • Protein Binding
  • Protein Conformation
  • Protein Interaction Mapping
  • Protein Structure, Tertiary
  • Recombinant Fusion Proteins / metabolism
  • Transfection
  • Ubiquitin / metabolism*
  • Xeroderma Pigmentosum / genetics
  • Zinc Fingers

Substances

  • Proliferating Cell Nuclear Antigen
  • Recombinant Fusion Proteins
  • Ubiquitin
  • DNA
  • DNA-Directed DNA Polymerase
  • Rad30 protein
  • DNA Polymerase iota
  • POLI protein, human