Mutagenesis and knockout models: NK1 and substance P

Handb Exp Pharmacol. 2005:(169):143-62. doi: 10.1007/3-540-28082-0_5.

Abstract

Tachykinins play an important role as peptide modulators in the CNS. Based on the concentration and distribution of the peptides and their receptors, substance P (SP) and its cognate receptor neurokinin 1 (NK1R) seem to play a particularly important role in higher brain functions. They are expressed at high levels in the limbic system, which is the neural basis of emotional responses. Three different lines of evidence from physiological studies support such a role of SP in the regulation of emotionality: (1) stress is often associated with elevated level of SP in animals and humans; (2) systematic and local injections of SP influence anxiety levels in a dose-dependent and site-specific manner; (3) NK1 receptor antagonists show anxiolytic effects in different animal models of anxiety. Although these studies point to the NK1 receptor as a promising target for the pharmacotherapy of anxiety disorders, high affinity antagonists for the human receptors could not be studied in rats or mice due to species differences in the antagonist binding sites. However, studies on anxiety and depression-related behaviors have now been performed in mouse mutants deficient in NK1 receptor or SP and NKA. These genetic studies have shown that anxiety and depression-related phenotypes are profoundly affected by the tachykinin system. For example, NK1R-deficient mice seem to be less prone depression-related behaviors in models of depression, and one study also provided evidence for reduced anxiety levels. Mice deficient in SP and NKA behaved similarly as the NK1R knockouts. In animal models of anxiety they performed like wildtype mice treated with anxiolytic drugs. In behavioral paradigms related to depression they behaved like wildtype animals treated with antidepressants. In summary, the genetic studies clearly show that the SP/NK1 system plays an important role in the modulation of emotional behaviors.

MeSH terms

  • Animals
  • Behavior, Animal
  • Mice
  • Mice, Knockout
  • Mutagenesis
  • Receptors, Neurokinin-1 / genetics
  • Receptors, Neurokinin-1 / physiology*
  • Substance P / genetics
  • Substance P / physiology*

Substances

  • Receptors, Neurokinin-1
  • Substance P