Pulse-step-sine rotation test for the identification of abnormal vestibular function

J Vestib Res. 2005;15(5-6):291-311.

Abstract

This study illustrates the use of a novel "pulse-step-sine" (PSS) rotational stimulus to identify abnormal function of the horizontal semicircular canals in human subjects with unilateral and bilateral vestibular deficits. The cyclic PSS stimulus includes a "bias component" and a "probe component". The bias component, consisting of a short duration pulse of acceleration followed by an acceleration step, is designed to produce a large change in canal afferent discharge rates that silences the neural activity in one canal during the step portion of the PSS stimulus. The pulse and step components are then repeated with opposite sign to silence afferent activity in the opposite canal. The probe component, consisting of a approximately 1 Hz sine wave superimposed on the step portions of the stimulus, is designed to test the ability of canal afferents in the excited canal to encode the probe stimulus. Various response measures are developed that characterize the horizontal slow phase eye movements evoked by the PSS stimulus. Results show that these measures can distinguish subjects with normal vestibular function from those with unilateral and bilateral vestibular loss, can identify the side-of-lesion in subjects with well compensated unilateral vestibular loss, and can possibly identify the side-of-greater-loss in subjects with asymmetric bilateral loss.

Publication types

  • Clinical Trial
  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Aged
  • Functional Laterality*
  • Head Movements
  • Humans
  • Middle Aged
  • Reference Values
  • Reflex, Vestibulo-Ocular / physiology*
  • Rotation
  • Semicircular Canals / physiopathology*
  • Vestibular Diseases / diagnosis*
  • Vestibular Diseases / physiopathology
  • Vestibular Function Tests / methods*