Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription

J Biol Chem. 2006 Aug 4;281(31):22062-22072a. doi: 10.1074/jbc.M601155200. Epub 2006 May 30.

Abstract

We have previously demonstrated that the expression of human ribosomal RNA genes (rDNA) in normal and cancer cells is differentially regulated by methylation of the promoter CpG islands. Furthermore, we showed that the methyl CpG-binding protein MBD2 plays a selective role in the methylation-mediated block in rDNA expression. Here, we analyzed the role of three functional mammalian DNA methyltransferases (DNMTs) in regulating the rDNA promoters activity. Immunofluorescence analysis and biochemical fractionation showed that all three DNMTs (DNMT1, DNMT3A, and DNMT3B) are associated with the inactive rDNA in the nucleolus. Although DNMTs associate with both methylated and unmethylated rDNA promoters, DNMT1 preferentially associates with the methylated genes. The rDNA primary transcript level was significantly elevated in DNMT1-/- or DNMT3B-/- human colon carcinoma (HCT116) cells. Southern blot analysis demonstrated a moderate level of rDNA promoter hypomethylation in DNMT1-/- cells and a dramatic loss of rDNA promoter methylation in double knockout cells. Transient overexpression of DNMT1 or DNMT3B suppressed the luciferase expression from both methylated and unmethylated pHrD-IRES-Luc, a reporter plasmid where the rDNA promoter drives luciferase expression. DNMT1-mediated suppression of the unmethylated promoter involves de novo methylation of the promoter, whereas histone deacetylase 2 cooperates with DNMT1 to inhibit the methylated rDNA promoter. Unlike DNMT1, both the wild type and catalytically inactive DNMT3B mutant can suppress rDNA promoter irrespective of its methylation status. DNMT3B-mediated suppression of the rDNA promoter also involves histone deacetylation. Treatment of HCT116 cells with Decitabine (a DNMT inhibitor) or trichostatin A (a histone deacetylase inhibitor) up-regulated endogenous rDNA expression. These inhibitors synergistically activated methylated pHrD-IRES-Luc, whereas they exhibited additive effects on the unmethylated promoter. These results demonstrate localization of DNMTs with the inactive rDNA in the nucleolus, the specific role of DNMT1 and DNMT3B in rDNA expression and the differential regulation of rDNA expression from the methylated and unmethylated rDNA promoters.

Publication types

  • Research Support, N.I.H., Extramural
  • Retracted Publication

MeSH terms

  • Animals
  • Cell Line
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases / physiology
  • DNA Methylation
  • DNA Methyltransferase 3A
  • DNA Methyltransferase 3B
  • DNA Modification Methylases / physiology*
  • DNA, Ribosomal / genetics
  • Gene Expression Regulation
  • Humans
  • Mice
  • Promoter Regions, Genetic
  • RNA, Ribosomal / genetics*
  • Transcription, Genetic*
  • Transfection

Substances

  • DNA, Ribosomal
  • DNMT3A protein, human
  • Dnmt3a protein, mouse
  • RNA, Ribosomal
  • DNA Modification Methylases
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases
  • DNA Methyltransferase 3A
  • DNMT1 protein, human
  • Dnmt1 protein, mouse