Activation and regulation of platelet-activating factor receptor: role of G(i) and G(q) in receptor-mediated chemotactic, cytotoxic, and cross-regulatory signals

J Immunol. 2006 Sep 1;177(5):3242-9. doi: 10.4049/jimmunol.177.5.3242.

Abstract

Platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycerolphosphocholine; PAF) induces leukocyte accumulation and activation at sites of inflammation via the activation of a specific cell surface receptor (PAFR). PAFR couples to both pertussis toxin-sensitive and pertussis toxin-insensitive G proteins to activate leukocytes. To define the role(s) of G(i) and G(q) in PAF-induced leukocyte responses, two G-protein-linked receptors were generated by fusing G alpha(i3) (PAFR-G alpha(i3)) or G alpha(q) (PAFR-G alpha(q)) at the C terminus of PAFR. Rat basophilic leukemia cell line (RBL-2H3) stably expressing wild-type PAFR, PAFR-G alpha(i3), or PAFR-G alpha(q) was generated and characterized. All receptor variants bound PAF with similar affinities to mediate G-protein activation, intracellular Ca2+ mobilization, phosphoinositide (PI) hydrolysis, and secretion of beta-hexosaminidase. PAFR-G alpha(i3) and PAFR-G alpha(q) mediated greater GTPase activity in isolated membranes than PAFR but lower PI hydrolysis and secretion in whole cells. PAFR and PAFR-G alpha(i3), but not PAFR-G alpha(q), mediated chemotaxis to PAF. All three receptors underwent phosphorylation and desensitization upon exposure to PAF but only PAFR translocated beta arrestin to the cell membrane and internalized. In RBL-2H3 cells coexpressing the PAFRs along with CXCR1, IL-8 (CXCL8) cross-desensitized Ca2+ mobilization to PAF by all the receptors but only PAFR-G alpha(i3) activation cross-inhibited the response of CXCR1 to CXCL8. Altogether, the data indicate that G(i) exclusively mediates chemotactic and cross-regulatory signals of the PAFR, but both G(i) and G(q) activate PI hydrolysis and exocytosis by this receptor. Because chemotaxis and cross-desensitization are exclusively mediated by G(i), the data suggest that differential activation of both G(i) and G(q) by PAFR likely mediate specific as well as redundant signaling pathways.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Calcium / metabolism
  • Cell Line, Tumor
  • Chemotaxis*
  • Enzyme Activation
  • GTP-Binding Protein alpha Subunits, Gi-Go / metabolism*
  • GTP-Binding Protein alpha Subunits, Gq-G11 / metabolism*
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Pertussis Toxin / pharmacology
  • Phosphorylation / drug effects
  • Platelet Activating Factor / pharmacology
  • Platelet Membrane Glycoproteins / metabolism*
  • Protein Binding
  • Rats
  • Receptors, G-Protein-Coupled / metabolism*
  • Receptors, Interleukin-8A / metabolism
  • Signal Transduction* / drug effects

Substances

  • Platelet Activating Factor
  • Platelet Membrane Glycoproteins
  • Receptors, G-Protein-Coupled
  • Receptors, Interleukin-8A
  • platelet activating factor receptor
  • Pertussis Toxin
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • GTP-Binding Protein alpha Subunits, Gi-Go
  • GTP-Binding Protein alpha Subunits, Gq-G11
  • Calcium