Endocytic trafficking of CFTR in health and disease

J Cyst Fibros. 2007 Jan;6(1):1-14. doi: 10.1016/j.jcf.2006.09.002. Epub 2006 Nov 13.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl-selective anion channel expressed in epithelial tissues. Mutations in CFTR lead to the genetic disease cystic fibrosis (CF). Within each epithelial cell, CFTR interacts with a large number of transient macromolecular complexes, many of which are involved in the trafficking and targeting of CFTR. Understanding how these complexes regulate the trafficking and fate of CFTR, provides a singular insight not only into the patho-physiology of cystic fibrosis, but also provides potential drug targets to help cure this debilitating disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cystic Fibrosis / genetics*
  • Cystic Fibrosis / physiopathology*
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism
  • Cystic Fibrosis Transmembrane Conductance Regulator / physiology*
  • Endocytosis / physiology*
  • Humans
  • Sequence Alignment
  • Structure-Activity Relationship
  • Transport Vesicles / physiology

Substances

  • CFTR protein, human
  • Cystic Fibrosis Transmembrane Conductance Regulator