Nuclear factor-kappaB p65 inhibits mitogen-activated protein kinase signaling pathway in radioresistant breast cancer cells

Mol Cancer Res. 2006 Dec;4(12):945-55. doi: 10.1158/1541-7786.MCR-06-0291.

Abstract

The molecular mechanism by which tumor cells increase their resistance to therapeutic radiation remains to be elucidated. We have previously reported that activation of nuclear factor-kappaB (NF-kappaB) is causally associated with the enhanced cell survival of MCF+FIR cells derived from breast cancer MCF-7 cells after chronic exposure to fractionated ionizing radiation. The aim of the present study was to reveal the context of NF-kappaB pathways in the adaptive radioresistance. Using cell lines isolated from MCF+FIR populations, we found that the elevated NF-kappaB activity was correlated with enhanced clonogenic survival, and increased NF-kappaB subunit p65 levels were associated with a decrease in phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK in all radioresistant MCF+FIR cell lines. Further irradiation with 30 fractions of radiation also inhibited MEK/ERK phosphorylation in paired cell lines of MCF+FIR and parental MCF-7 cells. Activation of ataxia-telangiectasia mutated (ATM) protein, a sensor to radiation-induced DNA damage, was elevated with increased interaction with NF-kappaB subunits p65 and p50. The interaction between p65 and MEK was also enhanced in the presence of activated ATM. In contrast, both interaction and nuclear translocation of p65/ERK were reduced. Inhibition of NF-kappaB by overexpression of mutant IkappaB increased ERK phosphorylation. In addition, MEK/ERK inhibitor (PD98059) reduced the interaction between p65 and ERK. Taken together, these results suggest that NF-kappaB inhibits ERK activation to enhance cell survival during the development of tumor adaptive radioresistance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Line, Tumor
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Gene Expression
  • Humans
  • MAP Kinase Signaling System
  • Mitogen-Activated Protein Kinase Kinases / metabolism
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinases / metabolism*
  • Phosphorylation
  • Radiation Tolerance
  • Signal Transduction / physiology*
  • Transcription Factor RelA / genetics
  • Transcription Factor RelA / metabolism*

Substances

  • Transcription Factor RelA
  • Extracellular Signal-Regulated MAP Kinases
  • Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinase Kinases