Clonal and parallel evolution of primary lung cancers and their metastases revealed by molecular dissection of cancer cells

Clin Cancer Res. 2007 Jan 1;13(1):111-20. doi: 10.1158/1078-0432.CCR-06-0659.

Abstract

Purpose: Several models of cancer progression, including clonal evolution, parallel evolution, and same-gene models, have been proposed to date. The purpose of this study is to investigate the authenticity of these models by comparison of accumulated genetic alterations between primary and corresponding metastatic lung cancers.

Experimental design: A whole-genome allelic imbalance scanning using a high-resolution single nucleotide polymorphism array and mutational analysis of the p53, EGFR, and KRAS genes were done on eight sets of primary and metastatic lung cancers. Based on the genotype data, the natural history of each case was deduced, and candidate metastasis suppressor loci were determined.

Results: Five to 20 chromosomal regions showed allelic imbalance in each tumor. Accumulated genetic alterations were similar between primary and corresponding metastatic tumors, and the majority(>67%) of genetic alterations detected in metastatic tumors was also detected in the corresponding primary tumors. On the other hand, in seven of the eight cases, there were genetic alterations accumulated only in metastatic tumors. Among these alterations, allelic imbalances at chromosome 11p15 and 11p11-p13 regions were the most frequent ones (4 of 8, 50%). Likewise, four cases showed genetic alterations detected only in primary tumors.

Conclusions: The natural history of each case indicated that the process of metastasis varies among cases, and that all three models are applicable to lung cancer progression. According to the clonal and parallel evolution models, it is possible that a metastasis suppressor gene(s) for lung cancer is present on chromosome 11p.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Alleles
  • Allelic Imbalance
  • Chromosomes, Human, Pair 11
  • Disease Progression
  • Female
  • Genotype
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / pathology*
  • Male
  • Microsatellite Repeats
  • Middle Aged
  • Models, Biological
  • Models, Genetic
  • Mutation
  • Neoplasm Metastasis
  • Polymorphism, Single Nucleotide