Improved maturation of CFTR by an ER export signal

FASEB J. 2007 Aug;21(10):2352-8. doi: 10.1096/fj.07-8128com. Epub 2007 Mar 28.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel in the plasma membrane of several epithelial cells. Maturation of CFTR is inefficient in most cells, with only a fraction of nascent chains being properly folded and transported to the cell surface. The most common mutation in CFTR, CFTR-deltaF508, leads to the genetic disease cystic fibrosis. CFTR-deltaF508 has a temperature-sensitive folding defect and is almost quantitatively degraded in the endoplasmic reticulum (ER). Here we tested whether a strong ER export signal appended to CFTR improves its transport and surface expression. We show that a single valine ER export signal at the C terminus of the cytoplasmic tail of CFTR improves maturation of wild-type CFTR by 2-fold. This conservative mutation interfered with neither plasma membrane localization nor stability of mature CFTR. In contrast, the valine signal was unable to rescue CFTR-deltaF508 from ER-associated degradation. Our finding of improved maturation of CFTR mediated by a valine signal may be of potential use in gene therapy of cystic fibrosis. Moreover, failure of the valine signal to rescue CFTR-deltaF508 from ER degradation indicates that the inability of CFTR-deltaF508 to leave the ER is unlikely to be due to a malfunctioning ER export signal.

MeSH terms

  • Cell Line
  • Cell Membrane / physiology
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics
  • Cystic Fibrosis Transmembrane Conductance Regulator / physiology*
  • Endoplasmic Reticulum / physiology*
  • Humans
  • Kidney
  • Recombinant Proteins / metabolism
  • Transfection

Substances

  • CFTR protein, human
  • Recombinant Proteins
  • Cystic Fibrosis Transmembrane Conductance Regulator