EGFR inhibition in glioblastoma cells induces G2/M arrest and is independent of p53

Cancer Biol Ther. 2007 Apr;6(4):571-9. doi: 10.4161/cbt.6.4.3852.

Abstract

Mutations involving the TP53 gene are frequently identified in up to 50% of all human tumors, including glioblastomas. Analysis of expression patterns of TP53 in glioblastomas shows that it is mainly mutated in secondary glioblastomas and is less common in primary GBMs. However, the prognostic significance of TP53 loss of function in astrocytomas has always been controversial. In contrast, EGFR/erbB2 complexes have been implicated in the poor prognosis of several cancers, including glioblastomas. Our previous work showed that transforming phenotypes could be inhibited by interfering with active EGFR/erbB2 complex using mutant erbB2 proteins in wild-type p53 GBM cells. To assess the dependence of EGFR inhibited phenotype on p53, we used three mutant p53 glioblastoma cell lines in the present study and showed that mutant erbB2 can be exploited to inhibit EGFR-mediated oncogenic transformation irrespective of p53 status. Ectopic expression of a mutant erbB2 receptor (T691S) in mutant p53 GBM cells resulted in slower growth rate than empty vector controls. T691S-expressing clones exhibited a more flattened and nontransformed morphology. Consistently, T691S inhibited transformation in soft agar assays and tumor formation in nude mice independent of p53 status. Biochemical analysis showed reduced Akt and GSK-3 alpha/beta, but not p42/44MAPK phosphorylation, in T691S-expressing cells, when compared to parental controls, suggesting the P13-K pathway may be more relevant than MAPK for glial cell transformation. Cell cycle analysis showed reduced cyclin D1 and CDK6 and increased phospho-Cdc-2 (Tyr15) and p15INK4B in erbB2-inhibited cells, suggesting that nonfunctional EGFR/erbB2 complexes exert their inhibitory effects at various stages of the cell cycle to block the progression of cells through G2/M via Akt/GSK-3/Cdc2 pathway. Collectively, these observations provide a basis for receptor-based therapies that disable erbB receptors and inhibit proliferative signals in erbB-expressing human cancers including glioblastomas, regardless of their TP53 status.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Cycle
  • Cell Division
  • Cell Line, Tumor
  • Cell Proliferation*
  • Cell Transformation, Neoplastic / genetics
  • Cell Transformation, Neoplastic / metabolism
  • Central Nervous System Neoplasms / metabolism*
  • ErbB Receptors / antagonists & inhibitors*
  • ErbB Receptors / metabolism
  • G2 Phase
  • Glioblastoma / metabolism*
  • Humans
  • Mice
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Mutation
  • Proto-Oncogene Proteins c-akt / metabolism
  • Receptor, ErbB-2 / genetics
  • Receptor, ErbB-2 / metabolism
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*

Substances

  • Tumor Suppressor Protein p53
  • ErbB Receptors
  • Receptor, ErbB-2
  • Proto-Oncogene Proteins c-akt
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3