Influence of combined methionine synthase (MTR 2756A > G) and methylenetetrahydrofolate reductase (MTHFR 677C > T) polymorphisms to plasma homocysteine levels in Korean patients with ischemic stroke

Yonsei Med J. 2007 Apr 30;48(2):201-9. doi: 10.3349/ymj.2007.48.2.201.

Abstract

Purpose: Methionine synthase (MTR) and 5,10-methylenetetrahydrofolate reductase (MTHFR) are the main regulatory enzymes for homocysteine metabolism. The present case- control study was conducted to determine whether there is an association between the MTR 2756A > G or MTHFR 677C > T polymorphism and plasma homocysteine concentration in Korean subjects with ischemic stroke.

Materials and methods: DNA samples of 237 patients who had an ischemic stroke and 223 age and sex-matched controls were studied. MTR 2756A > G and MTHFR 677C > T genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).

Results: Frequencies of mutant alleles for MTR and MTHFR polymorphisms were not significantly different between the controls and cases. The patient group, however, had significantly higher homocysteine concentrations of the MTR 2756AA and MTHFR 677TT genotypes than the control group (p=0.04 for MTR, p=0.01 for MTHFR). The combined MTR 2756AA and MTHFR 677TT genotype (p= 0.04) and the homocysteine concentrations of the patient group were also higher than those of the controls. In addition, the genotype distribution was significant in the MTHFR 677TT genotype (p=0.008) and combined MTR 2756AA and MTHFR 677TT genotype (p=0.03), which divided the groups into the top 20% and bottom 20% based on their homocysteine levels.

Conclusion: The results of the present study demonstrate that the MTR 2756A > G and MTHFR 677C > T polymorphisms interact with elevated total homocysteine (tHcy) levels, leading to an increased risk of ischemic stroke.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase / genetics*
  • Aged
  • DNA / blood
  • DNA / genetics
  • Female
  • Genotype
  • Homocysteine / blood*
  • Humans
  • Male
  • Methylenetetrahydrofolate Reductase (NADPH2) / genetics*
  • Middle Aged
  • Polymorphism, Single Nucleotide*
  • Stroke / blood
  • Stroke / enzymology
  • Stroke / genetics*

Substances

  • Homocysteine
  • DNA
  • Methylenetetrahydrofolate Reductase (NADPH2)
  • 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase