Demonstration of 5-HT(3) receptor function and expression in the mouse bladder

Naunyn Schmiedebergs Arch Pharmacol. 2007 Aug;375(6):359-68. doi: 10.1007/s00210-007-0173-7. Epub 2007 Jul 3.

Abstract

The aim of this study was to demonstrate the presence of 5-HT(3) receptors in the mouse bladder and to determine their location. Bladder strips from female mice were set up in gassed Krebs-Henseleit solution at 37 degrees C and contractions recorded in response to electrical field stimulation (8 Hz, 60 V, 0.5-ms pulse duration) applied for 2 s every 50 s. The potentiating effects of 5-hydroxytryptamine (5-HT) were recorded (in the presence of 1-microM methysergide and 1-microM GR125487 to isolate the 5-HT(3) receptor response), and contractions were expressed as a percentage of the response to 0.1-M KCl. Responses to (5-HT) were also obtained in the presence of the 5-HT(3) receptor antagonist, ondansetron. RT-PCR was used to detect the expression of the 5-HT(3A) and 5-HT(3B) subunit transcripts of the mouse 5-HT(3) receptor. 5-HT and 5-HT(3) receptor agonists caused concentration-dependent increases in the force of neurogenic contractions without affecting the baseline tone. The rank order of potency was: meta-chloro-phenylbiguanide (m-CPB) = 5-HT > 2-methyl-5-HT (2m5-HT) = 1-phenylbiguanide (1-PBG). The respective pEC(50) values were: 6.42 +/- 0.2 = 5.95 +/- 0.19 > 5.35 +/- 0.12 = 5.14 +/- 0.13. m-CPB acted as a full agonist (E (max) = 40.65 +/- 3.81% KCl), but both 2m5-HT and 1-PBG acted as lower potency partial agonists. Ondansetron (30, 100, 300 nM) caused concentration-related rightward displacements to the concentration-effect curve to 5-HT. Nonlinear regression analysis of the effect of the ondansetron concentrations on the pEC(50) values produced a pK(B) value of 8.29 +/- 0.22. Desensitization of sensory nerves to the contractile effect of capsaicin (10 microM for 60 min) did not alter the ability of 5-HT to potentiate neurogenic contractions. 5-HT (3 microM) inhibited contractions induced by direct muscle stimulation (lignocaine, 300 microM and 10-ms pulse width). m-CPB also caused the same effect with a pIC(50) of 6.62 +/- 0.10 and an E (max) of 48.03 +/- 2.25%. The concentration-response curve to m-CPB was shifted rightwards by ondansetron (1 microM) giving an apparent pK(B) value of 8.15 +/- 0.33. mRNA for both the 5-HT(3A) and 5-HT(3B) receptor subunits was detected in the detrusor as well as the mucosa with a greater relative expression of the 5-HT(3A) subunit in both layers. This study demonstrates that 5-HT mediates enhanced neurogenic contractions of the mouse bladder muscle by an action at 5-HT(3) receptors located prejunctionally on nonsensory nerve elements. Additionally, an inhibitory postjunctional population of the 5-HT(3) receptor was identified. The presence of the 5-HT(3) receptor was confirmed by the expression of both 5-HT(3A) and 5-HT(3B) receptor subunits of the 5-HT(3) receptor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • In Vitro Techniques
  • Mice
  • Muscle Contraction / drug effects
  • Muscle, Smooth / drug effects
  • Muscle, Smooth / physiology
  • Ondansetron / pharmacology
  • Protein Subunits / biosynthesis
  • Protein Subunits / genetics
  • RNA, Messenger / biosynthesis
  • Receptors, Serotonin / biosynthesis
  • Receptors, Serotonin / genetics
  • Receptors, Serotonin, 5-HT3 / biosynthesis
  • Receptors, Serotonin, 5-HT3 / physiology*
  • Serotonin / pharmacology
  • Serotonin Antagonists / pharmacology
  • Serotonin Receptor Agonists / pharmacology
  • Urinary Bladder / drug effects*
  • Urinary Bladder / physiology

Substances

  • Htr3a protein, mouse
  • Protein Subunits
  • RNA, Messenger
  • Receptors, Serotonin
  • Receptors, Serotonin, 5-HT3
  • Serotonin Antagonists
  • Serotonin Receptor Agonists
  • Serotonin
  • Ondansetron